
Denial of Sequencing Attacks in Ethereum Layer 2 Rollups
Zihao Li∗

The Hong Kong Polytechnic
University

Hong Kong, China

Zhiyuan Sun∗
The Hong Kong Polytechnic

University
Hong Kong, China

Southern University of Science and
Technology

Shen Zhen, China

Zheyuan He
University of Electronic Science and

Technology of China
Chengdu, China

Jinzhao Chu
The Hong Kong Polytechnic

University
Hong Kong, China

Hao Zhou
The Hong Kong Polytechnic

University
Hong Kong, China

Xiapu Luo†
The Hong Kong Polytechnic

University
Hong Kong, China

Ting Chen
University of Electronic Science and

Technology of China
Chengdu, China

Yinqian Zhang†
Southern University of Science and

Technology
Shen Zhen, China

Abstract
Layer 2 rollups offer promising solutions to address Ethereum’s
scalability issues. However, the centralized nature of the sequencer
in these rollups makes them vulnerable to denial of service attacks,
in which adversaries overwhelm the sequencer with invalid trans-
actions that cannot be included in blocks, thereby exhausting its
computational resources for transaction processing. To mitigate
such threat, layer 2 rollups implement the legality checkmechanism
to filter out invalid transactions before they reach the sequencer.

In this work, we unveil a novel denial of sequencing attack that
disrupts the liveness of layer 2 rollups at zero cost by bypassing the
legality check. Specifically, our attack enables an adversary to craft
malicious invalid transactions that bypass the legality check but are
ultimately discarded by the sequencer after execution. As a result,
the adversary can exhaust the sequencer’s computational resources
without incurring any fees. To construct such malicious transac-
tions, we propose two approaches: a side-channel based approach
and an incomplete check based approach, both of which rely on
underlying vulnerabilities in rollups. Additionally, we investigate
two widely used rollups, i.e., Arbitrum and Polygon zkEVM, and
uncover four unknown vulnerabilities within them, which can be
exploited to launch our attack using the two proposed approaches.
Through extensive experiments conducted in a local environment,
we demonstrate that all our attack variants, each exploiting distinct
vulnerabilities, lead to severe attack effects at zero cost. Moreover,
we discuss three feasible mitigations against our attack. At the
∗Co-first authors
†Corresponding authors

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CCS ’25, Taipei
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1525-9/2025/10
https://doi.org/10.1145/3719027.3765100

time of writing, both the vulnerabilities and our attack have been
acknowledged by the respective official teams, who have awarded
us bug bounties to highlight the severity of our findings.

CCS Concepts
• Security and privacy→ Distributed systems security.

Keywords
Layer 2 Rollups, Denial of Sequencing Attacks
ACM Reference Format:
Zihao Li, Zhiyuan Sun, Zheyuan He, Jinzhao Chu, Hao Zhou, Xiapu Luo,
Ting Chen, and Yinqian Zhang. 2025. Denial of Sequencing Attacks in
Ethereum Layer 2 Rollups. In Proceedings of the 2025 ACM SIGSACConference
on Computer and Communications Security (CCS ’25), October 13–17, 2025,
Taipei. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/3719027.
3765100

1 Introduction
The rapid rise of blockchain technology have attracted a grow-
ing number of users seeking to utilize its transparent and freely
accessible decentralized services, e.g., decentralized finance [63],
non-fungible token [10], and decentralized autonomous organi-
zation [56]. However, this surge in user engagement has further
exacerbated the scalability issues of blockchains [29, 57, 58]. This
limitation arises because blocks are constrained in size and fre-
quency by burdensome security mechanisms, such as consensus
protocols and peer-to-peer networks [39]. For example, Ethereum,
one of the most widely used blockchains, faces critical throughput
challenges, processing only tens of transactions per second [5, 39].
Moreover, due to these throughput limitations, users are forced to
compete for transaction inclusion by increasing their transaction
fees. Notably, as highlighted by community [16], high transaction
fees have become a major obstacle to blockchain usability.

In Ethereum ecosystem, several solutions are proposed to ad-
dress the scalability issues, which can be categorized into two types:

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3719027.3765100
https://doi.org/10.1145/3719027.3765100
https://doi.org/10.1145/3719027.3765100


CCS ’25, October 13–17, 2025, Taipei Zihao Li et al.

internal and external solutions. Internal solutions introduce new
functionalities to Ethereum underlying mechanisms to improve its
transaction processing efficiency, e.g., transaction parallel execu-
tion [40], speculative execution [8], and sharding networks [9]. Ex-
ternal solutions rely on external components to efficiently process
transactions off Ethereum, thereby improving transaction through-
put, e.g., layer 2 rollups [15] and state channels [14]. Among these
solutions, layer 2 rollups have emerged as the most widely adopted
solution in practice due to their low transaction fees, high through-
put, and seamless integration with Ethereum [15]. Currently, the to-
tal value locked in main layer 2 rollups has surpassed 38B USD [31].

Ethereum layer 2 rollups process transactions on layer 2 blockchains
through their sequencer. In addition to off-chain transaction pro-
cessing, layer 2 rollups typically handle transactions in a centralized
manner, forgoing the burdensome mechanisms to further reduce
the time overhead in transaction processing [11]. During handling
transactions, the sequencer periodically assembles processed trans-
actions into batches and submits them, along with the resulting
state root of layer 2 blockchains, to Ethereum as the payload of
Ethereum transactions. This procedure ensures that layer 2 transac-
tions inherit the same security guarantees as Ethereum transactions,
which are safeguarded by Ethereum security mechanisms [59].

The sequencer plays a critical role in layer 2 rollups, as their
liveness relies on the sequencer’s capability to process transactions.
However, due to the sequencer’s centralized nature, it is vulnerable
to denial of service attack. In such an attack, an adversary can flood
the sequencer with invalid transactions that cannot be included
in layer 2 blocks. These malicious transactions can exhaust the
sequencer’s computational resources, thereby compromising layer
2 rollups’ liveness by hindering transaction processing.

To mitigate this threat and ensure that only valid transactions
are forwarded to the sequencer, layer 2 rollups employ a legality
check mechanism. Specifically, this mechanism pre-executes layer
2 transactions in parallel on a forked blockchain state and filters out
invalid transactions. As a result, the legality check prevents the se-
quencer from wasting resources on processing invalid transactions,
thereby mitigating such denial of service attacks. Additionally, even
if an adversary attempts to overwhelm layer 2 rollups with valid
transactions, the transaction charging mechanism [4] employed
by layer 2 rollups will impose prohibitive financial costs on the
adversary, thereby effectively deterring such attacks [61].

In our work, we unveil a novel denial of sequencing attack aimed
at disrupting the liveness of layer 2 rollups by exhausting the se-
quencer’s computational resources at zero cost. We illustrate the
workflow of our attack in Fig. 1. Specifically, an adversary contin-
uously crafts and submits malicious invalid transactions that can
bypass the legality check, which serves to preemptively discard
invalid transactions that cannot be included in layer 2 blocks. These
malicious transactions are executed by the sequencer, consuming
its computational resources and hindering subsequent transaction
processing. Eventually, these malicious transactions are discarded
by the sequencer without incurring any fees for the adversary.

The core challenge in launching our attack lies in constructing
malicious invalid transactions that can deterministically bypass
the legality check while still being discarded by the sequencer. To
tackle this challenge, we propose two approaches for construct-
ing such malicious transactions, i.e, a side-channel based approach

tx

…

legality check execute
Sequencer

tx

…
suspended

discard tx

…

submit

Figure 1: The workflow of our denial of sequencing attack.

and an incomplete check based approach. In the first approach,
malicious transactions exploit side-channels in layer 2 rollups to
determine whether they are being executed in the legality check or
the sequencer. Based on this awareness, they dynamically adjust
their execution behaviors, i.e., appearing benign during the legal-
ity check while becoming invalid in the sequencer, to bypass the
legality check, and ultimately be discarded by the sequencer. In the
second approach, malicious transactions trigger invalid execution
behaviors that are not recognized by the legality check, but are
later identified by the sequencer, causing them to be discarded.

To demonstrate the feasibility and generalizability of our denial
of sequencing attack, we analyze two widely used layer 2 rollups,
i.e., Arbitrum [2] and Polygon zkEVM [51], i.e., which represent the
two major types of layer 2 rollups: optimistic layer 2 rollups and
zero-knowledge layer 2 rollups [30], respectively. Through our in-
vestigation, we have identified four unique vulnerabilities in the two
layer 2 rollups, which enable an adversary to successfully launch
our denial of sequencing attack using our two proposed approaches
for constructing malicious invalid transactions. Specifically, two
of these vulnerabilities are related to the side-channel based ap-
proach, with each corresponding to an exploitable side-channel.
The remaining two vulnerabilities pertain to the incomplete-check
based approach, with each corresponding to an unchecked invalid
execution behavior. By exploiting each of these four vulnerabilities
using the corresponding approaches we propose, an adversary can
construct malicious invalid transactions, which bypass the legal-
ity check and exhaust the sequencer’s computational resources,
thereby disrupting the liveness of target layer 2 rollups.
Attack scope. Arbitrum and Polygon zkEVM, as representative
layer 2 rollups, are vulnerable to the specific attack variants that
exploit the four vulnerabilities identified by us to construct and
submit malicious invalid transactions to the corresponding layer
2 rollups. Furthermore, both optimistic and zero-knowledge layer
2 rollups are susceptible to the general attack methodology of our
attack, as they rely on the legality check and the sequencer (i.e., the
attack targets in our denial of sequencing attack) for transaction
processing and block generation on their layer 2 blockchain. How-
ever, attacking other layer 2 rollups necessitates further investiga-
tion to identify exploitable vulnerabilities on them for constructing
corresponding malicious invalid transactions.
Attack evaluation. We conduct extensive experiments to evaluate
the feasibility and impact of our attack. Our results show that all
four attack variants, which exploit distinct vulnerabilities identi-
fied by us, are feasible. The corresponding malicious transactions
successfully bypass the legality check and are discarded at zero
cost after execution in the sequencer. Additionally, we assess the
potential for enhancing the attack effect by extending the execution
time of malicious transactions. These transactions are generated by
intensively executing inefficient opcodes, which typically consume
significant time due to numerous disk I/O operations. Furthermore,
we demonstrate that our attack can disable or partially disable the



Denial of Sequencing Attacks in Ethereum Layer 2 Rollups CCS ’25, October 13–17, 2025, Taipei

processing of benign transactions in layer 2 rollups end-to-end until
the attack ceases. Moreover, we discuss three potential mitigations,
and explore their respective strengths and weaknesses.
Vulnerability disclosure. We have disclosed all four identified
vulnerabilities to the Arbitrum and Polygon zkEVM teams via the
Immunefi platform [24], along with our attack that exploits these
vulnerabilities to disrupt the liveness of their layer 2 rollups. At the
time of writing, both the teams have acknowledged and patched
the vulnerabilities, awarding us corresponding bug bounties to
highlight their severity, and recognized the validity of our attack.
Contributions. We summarize our contributions as follows:
• Attack.We conduct the first in-depth study on the weaknesses of
the legality check in Ethereum layer 2 rollups, introducing a novel
denial of sequencing attack that disrupts the liveness of these
rollups by constructing malicious invalid transactions capable
of bypassing the legality check and exhausting the sequencer’s
computational resources at zero cost.

• Vulnerability.We uncover four vulnerabilities in two widely used
layer 2 rollups, Arbitrum and Polygon zkEVM, which can be
exploited to construct the malicious invalid transactions through
two approaches, i.e., a side-channel based approach and an in-
complete check based approach.

• Evaluation.We conduct extensive experiments to demonstrate
the feasibility of our attack, and examine its impact and cost. Our
results show that all attack variants can cause severe malicious
effects, such as disabling transaction processing in layer 2 rollups
end-to-end, while incurring zero cost for the adversary.

• Mitigation.We further explore three potential mitigations against
our attack and discuss their respective strengths and weaknesses.

We refer readers to [1] for our full paper version with the appendix.

2 Background of Ethereum layer 2 rollups
In this work, we focus on the layer 2 rollups of Ethereum, which
are designed to enhance Ethereum’s scalability by increasing trans-
action throughput, reducing transaction congestion, and alleviating
the workload on Ethereum (i.e., the layer 1 blockchain) [38]. These
layer 2 rollups achieve this by aggregating and processing trans-
actions on layer 2 (L2) blockchains off the layer 1 blockchain (i.e.,
Ethereum) [27, 39]. In addition to the off-chain transaction process-
ing, layer 2 rollups typically handle transactions in a centralized
manner, forgoing the burdensome mechanisms, such as consensus
protocols and peer-to-peer networks, to further reduce the time
overhead associated with transaction processing [11]. During han-
dling layer 2 transactions, the layer 2 rollups periodically assemble
the L2 transactions processed on the layer 2 blockchain into batches,
and submit them, along with the resulting state root of the layer 2
blockchain, to Ethereum as the payload of Ethereum transactions.
This procedure ensures that the layer 2 transactions inherit the
same security guarantees as Ethereum transactions, which are safe-
guarded by the complicated security mechanisms of Ethereum [59].

There are twomajor types of layer 2 rollups for Ethereum, i.e., op-
timistic layer 2 rollups and zero-knowledge layer 2 rollups [39, 59].
Both types of layer 2 rollups can be divided into three critical com-
ponents: the sequencer, the legality check, and the validators [59].
The primary differences between the two types of layer 2 rollups lie
in their validators [39, 59], which we will detail later. In Fig. 2, we

Layer 1 blockchain

Legality check Sequencer Validators

User Layer 2 rollups

tx valid tx

batch batch proof

Figure 2: Architecture of Ethereum layer 2 rollups.

illustrate the architecture of the two types of L2 rollups, including
the interaction between the three components, to facilitate a better
understanding of the layer 2 rollups.

The sequencer plays a critical role in layer 2 rollups, and it is
responsible for (i) ordering layer 2 transactions submitted from
users, (ii) executing these transactions on layer 2 blockchains, (iii)
assembling the processed transactions into batches, and (iv) submit-
ting these batches to the layer 1 blockchain [39]. Layer 2 rollups,
such as Arbitrum [2] and Polygon zkEVM [51], typically employ
the sequencer in a permissioned and centralized manner to ensure
its accountability for the layer 2 transactions it processes and to
improve transaction processing efficiency [39].

The legality check ensures that only valid transactions are for-
warded to the sequencer, preventing it from processing invalid
transactions. Specifically, since the sequencer operates in a cen-
tralized manner, it is vulnerable to exhaustion of computational
resources by being overwhelmed with invalid transactions (which
are not eligible for inclusion in the layer 2 blockchain), potentially
impeding services of layer 2 rollups, such as transaction processing.
Furthermore, with the legality check in place, even if an adversary
attempts to overwhelm the layer 2 rollups with valid transactions,
the transaction chargingmechanism [4] employed by layer 2 rollups
will impose prohibitive financial costs on the adversary, thereby
effectively deterring such attacks [61].

The validators are responsible for ensuring the finality of L2
transactions by (i) verifying that the L2 transactions are executed
correctly as specified in the batches, and (ii) confirming that the
updated L2 blockchain state, after the execution of these L2 trans-
actions, is correct [39]. Specifically, optimistic and zero-knowledge
layer 2 rollups employ different mechanisms in their validators to
ensure transaction finality, which we detail below:
Optimistic layer 2 rollups.Optimistic L2 rollups like Arbitrum [2]
employ interactive fraud proof schemes in their validators to ensure
transaction finality [12, 27, 35]. Specifically, the validators in opti-
mistic L2 rollups can initiate challenges to dispute the correctness of
the L2 transactions and their execution results submitted on the L1
blockchain. If a challenge is accepted, the incorrect L2 transactions
and their associated state transitions are rolled back and redressed.
Once the challenge period has elapsed, or if the challenges fail to
establish, the corresponding L2 transactions and their execution
results are proved to be finalized and valid.
Zero-knowledge layer 2 rollups. Zero-knowledge L2 rollups,
such as Polygon zkEVM [51], employ zero-knowledge proof based
validity proof schemes in their validators to ensure transaction
finality [7, 12, 35]. Specifically, the validators in zero-knowledge
L2 rollups are responsible for generating validity proofs for L2
transactions and their execution results submitted on L1 blockchain.
Only upon the validity proofs are generated are the transactions
and their execution results are proved to be finalized and valid.



CCS ’25, October 13–17, 2025, Taipei Zihao Li et al.

3 Preliminary
3.1 System model
We utilize the real-world deployment environment of representa-
tive L2 rollups like Arbitrum [2] and Polygon zkEVM [51] as our
system model to ensure the practicality and reliability of our study.
Specifically, in our model, L2 rollups consist of three major compo-
nents: the sequencer, the legality check, and the validators, which
collectively form the L2 rollup framework. Additionally, We employ
Ethereum as the underlying L1 blockchain for L2 rollups. Notably,
our study does not rely on specific features of Ethereum but instead
focuses on the security of the generic framework of L2 rollups.

Moreover, L2 components are managed in a centralized manner
and controlled by a permissioned entity. Users of L2 rollups can only
submit their transactions to the sequencer, which is responsible
for processing these transactions and periodically submitting them
to the L1 blockchain. Additionally, the sequencer employs a load-
balancing mechanism [36] to receive incoming user transactions,
ensuring that it remains operational even under high transaction
volume. For validators, they can operate under both optimistic and
zero-knowledge L2 rollup mechanisms.

Furthermore, we assume that interactions between L2 compo-
nents and the L1 blockchain are reliable and stable. Specifically,
all three L2 components and the L1 blockchain are assumed to
be unaffected by external factors such as power outages and net-
work congestion. Additionally, external attack vectors originating
from the L1 blockchain and L2 rollups, such as governance-layer
attacks (e.g., governance issues [56]), consensus-layer attacks (e.g.,
Byzantine attacks [47]), and network-layer attacks (e.g., network
intrusions [34]), are beyond the scope of our study.
Adversary. We consider an adversary A who interacts with L2
rollups by only submitting transactions, without the capability to
interfere with the network or conduct social engineering attacks
against L2 rollups. The adversary A has limited cryptocurrency
funds in victim L2 rollups to configure the fee parameters for pro-
cessing their transactions on L2 rollups. Notably, we will later
demonstrate that launching our attack ultimately incurs no cost for
the adversary, as the crafted attack transactions are not included in
the L2 blockchain but instead exhaust the computational resources
of the sequencer. Additionally, the adversaryA can control multiple
externally owned accounts (EOAs) to sign and submit transactions
at a rate similar to that of legitimate users. As a result, L2 rollups
cannot trivially distinguish attack transactions from legitimate ones
based solely on network load analysis.
Attack target. The adversary A aims to disrupt the liveness of
L2 rollups by submitting malicious transactions. These malicious
transactions will be processed by the sequencer but ultimately dis-
carded without being included in L2 blockchain. In this scenario, the
sequencer is overwhelmed by the influx of malicious transactions,
significantly degrading its ability to process benign transactions.
Consequently, the liveness of victim L2 rollups is severely compro-
mised, leading to a situation where either no transactions or only a
minimal number of benign transactions can be processed.

3.2 Notations
– L2 users. L2 users can manage multiple EOAs and use them
to sign L2 transactions, which are then submitted to L2 rollups.

Additionally, when signing their transactions, L2 users need to
configure fee parameters (similar to gas prices in Ethereum [64]) to
cover the processing costs on L2 rollups.
– Transaction pool. The transaction pool maintained by the se-
quencer stores pending transactions that have not been processed
and assembled into L2 blocks. Transactions in the pool are ordered
based on their nonce values and the fee parameters specified by
L2 users. Specifically, for transactions signed by the same L2 user,
those with smaller nonces are processed first. For transactions from
different L2 users, those with higher fee parameters are given prior-
ity, ensuring that users willing to pay higher transaction fees have
their transactions prioritized for processing.
– L2 transaction processing. L2 transactions either invoke smart
contracts by providing the necessary execution parameters, or serve
to only transfer funds between EOAs. When contracts are involved,
the sequencer executes the L2 transactions opcode by opcode on the
L2 blockchain. Transaction execution concludes upon encountering
termination opcodes, such as RETURN or STOP, or when triggering
execution errors lead to premature termination. After execution, the
sequencer includes the L2 transactions in L2 blocks, and assembles
them into L2 batches to submit to the L1 blockchain.
– Transaction execution errors. Errors that cause transaction
execution to halt can be categorized into two types: legal errors
and illegal errors. Legal errors refer to issues that do not compro-
mise the validity of transaction execution. For example, out-of-gas
errors [39] and errors triggered by error-handling opcodes like
REVERT fall under this category. Illegal errors refer to issues that
render transaction execution invalid and prevent transaction inclu-
sion in L2 blocks, typically due to errors that the sequencer cannot
handle. For example, proof overflow errors in zero-knowledge L2
rollups [39] arise when the proof cost of L2 transactions exceeds
the maximum limit of a block, preventing validators from gener-
ating corresponding validity proofs. In such cases, the transaction
execution becomes invalid, and the sequencer needs to discard
corresponding L2 transactions from the transaction pool.
– Reloading invalid transactions. For several transactions that
raise partially illegal errors, i.e., errors that the sequencer can han-
dle in specific scenarios, they will be returned to the transaction
pool for inclusion in future L2 blocks. For example, consider zero-
knowledge L2 rollups where three transactions, T1, T2, and T3, are
processed by the sequencer. If, during block assembly, (i) the com-
bined proof cost of T1 and T2 exceeds the block’s maximum limit,
and (ii) the proof cost of T2 alone does not exceed the limit, then T2
will be returned to the transaction pool. The sequencer will then
process T3, and attempt to assemble T1 and T3 into a L2 block.
– Transaction fees. For transactions that either execute success-
fully or encounter only legal errors, the sequencer proceeds to
include them in L2 blocks and charges transaction fees to the L2
users who signed them. These fees are determined based on the fee
parameters set by L2 users during transaction signing, as well as the
actual execution costs incurred by the sequencer during processing,
similar to gas prices and costs in Ethereum [64].
– Non-packable transactions. Non-packable transactions refer to
L2 transactions that either encounter illegal errors or consistently
raise partially illegal errors during execution in the sequencer. Since
these transactions can not be included in L2 blocks, the sequencer
will not charge any fees to the L2 users who signed them.



Denial of Sequencing Attacks in Ethereum Layer 2 Rollups CCS ’25, October 13–17, 2025, Taipei

Intended Functionality of Transaction Processing with Legality Check

Input: There exists a set of L2 users, denoted as U, and a sequence of L2 transactions, denoted as T, which are submitted to the
sequencer. Each transaction in T is signed by one of the L2 users in U.
Initial check: Invalid transactions are filtered out during the initial checks in the legality check procedure without involving
transaction execution. This ensures that invalid transactions are efficiently discarded. Specifically, for an L2 transaction T in T
signed by an EOAU in U, the initial check verifies: (i) whetherU has sufficient funds if T involves a fund transfer, (ii) whether
T is signed with a valid nonce, i.e., the nonce must not decrease for each EOA, and (iii) whether T satisfies the gas bumping
requirements, i.e., its transaction fee must be higher than that of a previous transaction (not yet included in a block) signed byU
with the same nonce. If any of the three conditions are not met, the transaction T is deemed invalid and will be discarded.
Pre-execution check: Layer 2 rollups fork the current state of the L2 blockchain, denoted as S′, and execute the L2 transactions
in T that passed the initial check on the forked blockchain state S′. The legality check determines whether any illegal errors or
partially illegal errors occur during the transaction execution. If any illegal errors or partially illegal errors are encountered, the
corresponding L2 transactions are deemed invalid and will be discarded. By executing on the forked state S′, layer 2 rollups can
conduct the pre-execution check in parallel, improving the efficiency of the legality check without affecting the actual state of the L2
blockchain. For the L2 transactions that pass the pre-execution check, they will be stored in the transaction pool, awaiting further
processing by the sequence. The transactions in the pool will be ordered in a sequence, denoted as T′, based on their nonce values
and the fee parameters specified by L2 users.
Execution: The sequencer picks and executes L2 transactions in T′ sequentially based on their priority. These transactions are
executed on the latest state of the L2 blockchain, denoted as S, and perform state transitions transaction by transaction. For example,
when executing two transactions, T1 and T2, the blockchain state transitions from S to S1 and then to S2. Notably, at the initial
part of transaction execution, the sequencer will perform several validity checks, such as verifying the gas limit and gas price.
Transactions that violate these constraints are directly discarded. However, such transactions will still remain in transaction pool
until they are picked and discarded by the sequencer.
Post-execution processing: The sequencer collects errors raised during each transaction execution. If a transaction encounters
illegal errors, the sequencer will remove it from the execution list, and the next transaction will execute on the state prior to the
discarded transaction. For example, consider two transactions, T1 and T2, executing on state S. If T1 alters the state S to S1 but
encounters illegal errors, the state S1 will be rolled back to S, and T2 will re-execute on S, transitioning the state to a new state S′

1.
Transactions that encounter illegal errors will be discarded by the sequencer from the transaction pool, and the L2 rollups will not
charge any transaction fees to the corresponding L2 users. In contrast, transactions that encounter partially illegal errors will be
returned to the transaction pool for inclusion in future L2 blocks.
Finalization: For L2 transactions included in L2 blocks, the sequencer assembles the processed transactions into batches. These
batches are then submitted to the L1 blockchain as the payload of L1 transactions. Once the L1 transactions containing the L2
batches are finalized on the L1 blockchain, the L2 transactions are considered finalized and valid. Their transaction orders and
execution results cannot be altered, except in the case of block reorganization or network fork on the L1 blockchain.

Figure 3: Intended functionality of transaction processing procedure with the legality check in layer 2 rollups.

3.3 Legality check
The legality check is designed to filter out invalid transactions be-
fore they reach the sequencer. In Fig. 3, we illustrate the intended
functionality of the transaction processing with legality check in
L2 rollups to provide a more comprehensive understanding of our
attack. Specifically, the legality check consists of two stages: the ini-
tial check and the pre-execution check. The initial check stage aims
to filter out invalid transactions without executing them, ensuring
their efficient removal. The pre-execution check stage pre-executes
transactions on a forked L2 blockchain state to identify invalid
transactions by checking if any (partially) illegal errors encounter
during execution. Invalid transactions identified in both the stages
are discarded, and will not be processed in the sequencer.

After passing the legality check, transactions are forwarded to
the sequencer for further processing. The sequencer collects errors
encountered during execution, and filters out transactions that can-
not be included in L2 blocks during the post-execution processing

stage. This processing stage ensures that only valid transactions
are ultimately included in L2 blockchain. Transactions excluded in
this stage are either discarded or returned to the transaction pool
for potential inclusion in future L2 blocks.

4 Attack overview
In our denial of sequencing attack, the adversary exploits the non-
inclusion property of non-packable transactions in L2 blocks, en-
abling them to exhaust the sequencer in layer 2 rollups by forcing
the sequencer to process these malicious transactions without incur-
ring any cost. Since layer 2 rollups typically operate in a centralized
manner, the sequencer is solely responsible for transaction pro-
cessing and block production. As a result, when the sequencer is
overwhelmed by malicious transactions, block production proce-
dure slows down or halts entirely, disrupting the liveness of victim
layer 2 rollups. In Fig. 4, we illustrate the workflow of our denial of
sequencing attack, which consists of the following five steps:



CCS ’25, October 13–17, 2025, Taipei Zihao Li et al.

…

tx

tx

…

tx

Legality 
check

tx … tx

tx

tx

L2 blocks

tx tx …

submit

discard

return to re-process

pending txs in txpool

check pend execute assemble

tx txmalicious transactions benign transactions

Sequencer

illegal errors

partially 
illegal errors

Figure 4: The workflow of our denial of sequencing attack.

(1) The adversary repeatedly crafts a series of non-packable trans-
actions, which are designed to trigger illegal or partially illegal
execution errors in the sequencer, with high transaction fee
parameters, and submits them to the target layer 2 rollup.

(2) These malicious transactions pass both the initial check and pre-
execution stages, and are forwarded to the sequencer. Before
execution on L2 blockchain, these transactions are temporarily
stored in the transaction pool, where they are ordered based on
their configured transaction fee parameters.

(3) Since these malicious transactions are configured with high
transaction fee parameters, the sequencer prioritizes them for
execution. During execution on the L2 blockchain, these ma-
licious transactions trigger illegal or partially illegal errors,
preventing their inclusion in L2 blocks. Transactions raising
illegal errors are discarded by the sequencer, while those raising
partially illegal errors are returned to the transaction pool by
the sequencer. Since these malicious transactions are not in-
cluded in L2 blocks, the adversary incurs no cost, even though
these transactions are configured with high fee parameters.

(4) After being returned to the transaction pool, these malicious
transactions, configured with high transaction fee parameters,
are prioritized for re-selection by the sequencer for re-execution
on new blockchain state. Since these malicious transactions
consistently trigger partially illegal errors, they repeatedly enter
a loop of execution and return to the transaction pool.

(5) The sequencer becomes flooded by processing both malicious
transactions submitted directly by the adversary, and those
re-selected from the transaction pool. This exhaustion of com-
putational resources leads to minimal or halted L2 transaction
processing, ultimately disrupting victim L2 rollups’ liveness.

Challenge. The core challenge in launching our attack lies in
deterministically crafting non-packable transactions. Specifically,
both legality check and the sequencer execute L2 transactions to
determine whether illegal or partially illegal errors are raised dur-
ing transaction execution. In this case, non-packable transactions
must bypass legality check without triggering illegal or partially
illegal errors, yet encounter illegal or partially illegal errors in the
sequencer, thereby preventing their inclusion in L2 blocks. If the
crafted transactions prematurely encounter errors and fail to by-
pass legality check, they will be discarded in legality check before
reaching the sequencer, resulting in no attack impact on the target
L2 rollup while only consuming the adversary’s computational re-
sources. Additionally, if the crafted transactions do not encounter

errors both in legality check and the sequencer, they will be in-
cluded in L2 blocks, incurring significant costs for the adversary
while failing to disrupt the liveness of the victim L2 rollup.
Approaches for crafting non-packable transactions. To suc-
cessfully launch our attack, we design two approaches for crafting
non-packable transactions, which are inspired by two observations
derived from real-world examples.
Observation 1 (Side-channel): After being submitted to L2 rollups,
L2 transactions can identify whether they are executed in legality
check or in the sequencer through side-channels.

Approach 1: With the side-channels, the adversary can (i) deploy
a malicious contract containing an if branch statement that checks
the side-channel information, and (ii) launch the attack by crafting
malicious transactions that invoke this contract. In this if state-
ment, the contract behaves differently depending on whether the
side-channel reports that the malicious transactions are executed in
legality check or in the sequencer. When executed in legality check,
the contract behaves benignly, allowing the malicious transactions
to bypass legality check and reach the sequencer. However, when
executed in the sequencer, the contract behaves maliciously by trig-
gering illegal or partially illegal errors, preventing the malicious
transactions from being included in L2 blocks.

Example 1: Li et al. [39] identify a potential state discrepancy
between (i) the forked L2 blockchain state for executing L2 trans-
actions in the pre-execution check stage, and (ii) the current L2
blockchain state in the sequencer within L2 rollups. Specifically,
they find that the forked L2 blockchain state used in pre-execution
check stage may lag behind the current L2 blockchain state. Lever-
aging this finding, they propose an approach to uncover bugs in
L2 rollups by concealing the bug-triggering logic of a test transac-
tion during the pre-execution check stage. This approach employs
a pair of transactions, where, the first transaction, T1, modifies a
specified blockchain state, while the second transaction, T2, act-
ing as the test transaction, checks whether the state modification
has taken effect. To ensure execution order, they assign T2 a larger
nonce than T1, enforcing T2 to execute after T1. If the corresponding
state remains unmodified (i.e., T1 has not been executed), the test
transaction T2 infers that it is being executed on the stale forked
L2 blockchain state during the pre-execution stage. Consequently,
it will behave benignly to bypass the pre-execution check. Once
forwarded to the sequencer, the test transaction shifts its execution
logic to ultimately trigger bugs in zero-knowledge L2 rollups.



Denial of Sequencing Attacks in Ethereum Layer 2 Rollups CCS ’25, October 13–17, 2025, Taipei

Notably, we present the above example to facilitate the under-
standing of side-channels in crafting non-packable transactions.
However, the above finding does not fully satisfy the requirements
of our side-channels for two reasons. First, based on this finding,
the adversary cannot deterministically craft non-packable transac-
tions, because, in some cases, the second transaction, T2 cannot
distinguish between the pre-execution check stage and execution
in the sequencer. Second, launching our attack based on this find-
ing will incur financial costs for the adversary. When submitting a
large number of malicious transactions, the adversary will find the
attack cost prohibitive. Specifically, during the pre-execution check
stage, the forked L2 blockchain state can align with the current
blockchain state. For example, if the first transaction, T1, has already
been included in L2 blocks before the pre-execution check stage
forks the L2 blockchain state, the two states will be synchronized.
In this case, the second transaction, T2, will mistakenly assume it is
executed in the sequencer, even though it is actually executed on
the forked L2 blockchain state during the pre-execution check stage.
As a result, the second transaction, T2, will trigger errors and be
discarded before reaching the sequencer. Furthermore, regardless
of whether the second transaction, T2, is included in L2 blocks, the
first transaction, T1, will always be included in L2 blocks, imposing
financial costs on the adversary.
Observation 2 (Incomplete check): The legality check is not com-
prehensive. Certain illegal errors or partially illegal errors are not
recognized as errors during the pre-execution procedure of legality
check, but are considered errors during execution in the sequencer.

Approach 2: Given the incompleteness of legality check in recog-
nizing illegal and partially illegal errors, the adversary can launch
the attack by crafting malicious transactions that trigger these er-
rors. In this scenario, even though the malicious transactions trigger
illegal and partially illegal errors, they will still be forwarded to
the sequencer. Once they encounter these errors in the sequencer,
they will be either discarded or returned to the transaction pool,
preventing their inclusion in L2 blocks.

Example 2: A disclosed vulnerability in Polygon zkEVM allows
an adversary to bypass legality check, and force the sequencer to
execute invalid transactions for cross-chain asset withdrawals [68].
Specifically, as a layer 2 rollup for Ethereum, Polygon zkEVM en-
ables users to transfer assets from Ethereum to Polygon zkEVM via
cross-chain bridges. During this process, users first lock their assets
on Ethereum. Once Polygon zkEVM confirms the event of asset
lock, users can send the claim transactions on Polygon zkEVM to
withdraw their assets. Notably, claim transactions are sequenced
in transaction pools based on their fee parameters, and Polygon
zkEVM processes them similarly to normal L2 transactions, with
additional logic for cross-chain asset transfers. In addition, claim
transactions are permitted to be fee-free (i.e., with transaction fee
parameters set to zero), since new users on Polygon zkEVM may
not have assets to cover transaction fees of their claim transactions.

When processing claim transactions for cross-chain asset with-
drawals, the pre-execution check stage first determines whether
the transactions are valid. For example, transactions are invalid if
no corresponding assets have been locked on Ethereum. However,
the pre-execution check stage contains an incomplete check for
filtering out invalid transactions. Specifically, based on whether

a claim transaction’s fee parameters are zero, and whether the
transaction itself is valid, the pre-execution check stage needs to
handle four possible cases: (i) invalid claim transactions with zero
fee parameters, (ii) valid claim transactions with zero fee param-
eters, (iii) valid claim transactions with non-zero fee parameters,
and (iv) invalid claim transactions with non-zero fee parameters.
For the first three cases, the pre-execution check stage correctly
identifies valid transactions, ensuring that only valid transactions
are forwarded to the sequencer. However, in the fourth case, due to
missing validation logic, the pre-execution check stage mistakenly
recognizes invalid claim transactions with non-zero fee parameters
as valid, and forwards them to the sequencer. Since these claim
transactions are inherently invalid, the sequencer will ultimately
recognize and discard them.

4.1 Attack design consideration
In this subsection, we address three key design questions to clarify
the considerations behind our denial of sequencing attack.
Q1: How can our attack disrupt the liveness of L2 rollups by
consuming the sequencer’s computational resources?
In layer 2 rollups, the sequencer operates in a centralized manner,
and is solely responsible for transaction processing and block pro-
duction. By continuously submitting malicious transactions that
can eventually reach the sequencer for execution, our attack can
deplete the sequencer’s computational resources. Notably, since
the sequencer processes L2 transactions sequentially, our attack
can exhaust its resources in two ways. First, since these malicious
transactions do not incur transaction fees for the adversary, the ad-
versary can generate and submit a large number of malicious trans-
actions via multiple EOAs, thereby flooding the transaction pool. As
a result, when selecting transactions for execution, the sequencer
is more likely to process the malicious ones. Second, transaction
execution can be resource-intensive and time-consuming [21, 48].
The adversary can craft transactions that involve significant CPU
computation and disk I/O [36, 65], further straining the sequencer’s
computational capacity. By leveraging these two ways to craft ma-
licious transactions, the sequencer is forced to allocate most of
its computational resources in processing malicious transactions,
leading to minimal or halted L2 block production and ultimately
disrupting the liveness of the targeted L2 rollup.
Q2: Can an adversary disrupt the liveness of L2 rollups by
directly overloading the legality check?
Although the legality check is a critical component in L2 rollups,
and the sequencer needs to wait for transactions forwarded from the
legality check before proceeding with further transaction execution
and block production, it is impractical for an adversary to disrupt
the liveness of L2 rollups by directly exhausting the legality check’s
computational resources. This is primarily due to differences in
transaction handling between the legality check and the sequencer.
Specifically, unlike the sequencer, which processes transactions
sequentially, the legality check is designed to process transactions
and determine their validity in parallel on a load-balanced cluster.
As a result, the legality check can handle multiple L2 transactions
simultaneously, making it difficult for an adversary to monopolize
its computational resources and block other L2 users by submitting
a large number of malicious transactions.



CCS ’25, October 13–17, 2025, Taipei Zihao Li et al.

Q3. Why must malicious transactions be configured with
high transaction fee parameters?
After passing the legality check, both malicious and benign trans-
actions are temporarily stored in the transaction pool before being
selected by the sequencer for further execution and block genera-
tion. Within the transaction pool, transactions are prioritized based
on their fee parameters, with the sequencer selecting those offering
higher fees for execution first. To maximize the likelihood of mali-
cious transactions being selected and exhausting the sequencer’s
computational resources, the adversary must configure malicious
transactions with high fee parameters. Otherwise, if benign trans-
actions offer higher fees, they will be prioritized, allowing the se-
quencer to continue processing them and generating L2 blocks.
This reduces the impact of our denial of sequencing attack on the
liveness of the targeted L2 rollup. Notably, since these malicious
transactions trigger illegal or partially illegal execution errors, they
cannot be included in L2 blocks. Consequently, even if they are
configured with exceptionally high fees to maximize their selec-
tion by the sequencer, they will ultimately be discarded without
incurring any transaction costs for the adversary. Therefore, it is
both reasonable and cost-effective for the adversary to conduct the
attack by assigning high fee parameters to malicious transactions.

5 Attack design
In §4, we propose two approaches, i.e., side-channel and incomplete
check, for deterministically crafting non-packable transactions. In
this section, we will detail the vulnerabilities identified by us in
popular layer 2 rollups, which enable an adversary to successfully
launch our attack via using these two approaches.
L2 rollup selection. As detailed in §2, layer 2 rollups can be cate-
gorized into two types, i.e., optimistic and zero-knowledge layer
2 rollups. To demonstrate the generalizability of our denial of se-
quencing attack, we have identified vulnerabilities in two widely
used layer 2 rollups representing each category, i.e., Arbitrum [2] for
the former and Polygon zkEVM [51] for the latter. Notably, Polygon
zkEVM introduces a new cost metric to quantify the proof cost of
generating a zero-knowledge proof for transaction execution [51].
Additionally, Polygon zkEVM introduces a new virtual machine
architecture for processing transactions, i.e., zkExecutor [51], to
facilitate the generation of zk proofs for transaction execution. In
contrast, Arbitrum retains the traditional gas cost model for trans-
action execution, similar to Ethereum, and continues to use the
Ethereum Virtual Machine (EVM) for executing transactions.

To uncover vulnerabilities that an adversary can exploit to launch
our denial of sequencing attack, we investigate the documentation
and projects of Arbitrum [3] and Polygon zkEVM [50], focusing
on their transaction processing procedures, particularly the logic
of their legality check and post-execution processing in the se-
quencer. By analyzing discrepancies between these two stages, we
identify four specific vulnerabilities: two related to side channels,
and the other two related to incomplete check. We discuss these
four vulnerabilities in detail in the following subsections.

5.1 Vulnerabilities related to side-channels
We have identified two vulnerabilities in Polygon zkEVM, which
are related to side-channels. By exploiting the two vulnerabilities

User Txpool Encoder zkExecutorRLP(TX,v,r,s) TX RLP(TX,v’, r’, s’)

RLP(TX,v,r,s)

pre-execution stage execution in the sequencer

Figure 5: Transaction encoding and decoding during the pre-
execution stage and the execution in the sequencer.

to launch our denial of sequencing attack, an adversary can craft
malicious transactions that behave benignly during legality check,
but trigger illegal or partially illegal errors in the sequencer.
Vulnerability #1: Discrepancy in proof cost. This side-channel
arises from a discrepancy in transaction encoding and decoding
between the pre-execution and the execution in the sequencer.

As shown in Fig. 5, after receiving a raw transaction encoded in
RLP format [25] from a user, i.e., RLP(TX, v, r, s), the transaction pool
activates the legality check to determine whether the transaction
can be stored in the pool for future processing and block generation.
Notably, the values v, r, s represent the ECDSA signature values [26]
of the raw transaction, which ensure the authenticity and integrity
of the transaction sender [64]. During the legality check, the raw
transaction is first decoded into an unsigned transaction object, i.e.,
TX, which contains the transaction metadata, such as the sender,
recipient, and nonce, for the initial check. Following the initial
check, the unsigned transaction is re-encoded into RLP format,
i.e., RLP(TX, v’, r’, s’), where v’, r’, s’ are fixed values specified by
Polygon zkEVM. The encoded transaction is then forwarded to the
zkExecutor for the pre-execution check. Once the legality check is
passed, the transaction in raw format, i.e., RLP(TX, v, r, s) will be
directly forwarded to the sequencer for further processing, where
the zkExecutor is also employed for transaction execution.

The key discrepancy lies on the different encoded transactions
sent to zkExecutor between the pre-execution stage and the exe-
cution in the sequencer, specifically the differing signature values
of v, r, s and v’, r’, s’. During execution on the zkExecutor, these
signature values are used in the process of recovering the trans-
action signer [51], where the proof cost varies depending on the
specific signature values. This variation arises because the zkEx-
ecutor measures proof cost in a fine-grained manner, i.e., based
on the executed code operations [51]. For example, recovering the
transaction signer involves elliptic curve scalar multiplication. If
certain bits of the elliptic curve points are zero, the corresponding
scalar multiplication operations are bypassed, incurring no proof
cost. As a result, different signature values can lead to different
proof costs for recovering the transaction signer.

Vulnerability exploitation: Given the proof cost limit, denoted as
L𝑏 , for transactions within a block on Polygon zkEVM, an adver-
sary can exploit the first vulnerability to craft a malicious trans-
action whose proof cost remains within L𝑏 during the legality
check. However, upon execution in the sequencer, the transaction’s
proof cost exceeds L𝑏 , triggering a proof overflow error, ultimately
resulting in the malicious transaction being discarded.

Crafting the malicious transaction involves two steps, corre-
sponding to the two parts of a transaction’s proof cost. Specifically,
the proof cost of a transaction, denoted as C, is the sum of the proof
cost for transaction preprocessing, denoted as C𝑝 , and the proof



Denial of Sequencing Attacks in Ethereum Layer 2 Rollups CCS ’25, October 13–17, 2025, Taipei

1 Contract Vulnerability #2 {

2 function DoS(uint256 signedGasPrice) public {

3 if (tx.gasprice == signedGasPrice) {

4 .../* benign operations */

5 } else {

6 .../* intentionally trigger errors */}}}

Figure 6: Code snippet of the contract demonstrating the
exploitation of the second vulnerability.

cost for transaction execution [51], denoted as C𝑒 . Notably, transac-
tion preprocessing includes recovering the transaction signer from
the signature values, such as v’, r’, s’. Since these signature values
are fixed in the encoded transaction during pre-execution as v’, r’,
s’, we denote the proof cost of transaction preprocessing during
pre-execution as C′

𝑝 . In the first step, the adversary crafts a contract
such that invoking it results in a proof cost of transaction execution
C𝑒 slightly below L𝑏 , while ensuring that the sum of C′

𝑝 and C𝑒
does not exceed L𝑏 . In the second step, the adversary randomly
generates transaction signatures to identify signature values that
cause the sum of C𝑝 and C𝑒 to exceed L𝑏 . As a result, malicious
transactions can be generated by (i) invoking the crafted contract
and (ii) signing the transaction with the desired signature values.
Vulnerability #2: Discrepancy in effective gas price. This side-
channel arises from the discrepancy in transactions’ effective gas
price between the pre-execution and the execution in the sequencer.

The effective gas price is introduced as part of a new transaction
fee mechanism introduced by Polygon zkEVM, which is designed
to enhance the fairness of transaction charges, and further reduce
transaction fees. In this mechanism, users still specify a gas price
when signing transactions, representing the amount they are will-
ing to pay per unit of gas. However, the actual gas price applied,
i.e., the effective gas price, is a reduced version of the originally
specified gas price. This reduction factor is determined by two fac-
tors: (i) the cost of data availability associated with submitting the
layer 1 transaction that carries the user’s transaction as its payload
(cf. details in §2), and (ii) the extent to which the originally signed
gas price exceeds the minimum gas price suggested by Polygon
zkEVM. During transaction execution, the effective gas price re-
places the originally signed gas price. Users can retrieve its value
during transaction execution using opcodes such as GASPRICE [51].

The key discrepancy lies on the distinct values of effective gas
price between the pre-execution stage and the execution in the se-
quencer. Specifically, during pre-execution, as discussed in the first
vulnerability, transactions in the unsigned transaction object are en-
coded into RLP format, and sent to the zkExecutor for pre-execution
check. However, since the effective gas price is determined based
on the information derived after pre-execution, such as the cost of
data availability, Polygon zkEVM assigns the maximum possible
value, i.e., the originally signed gas price, to the effective gas price
in the encoded transaction. In contrast, during execution in the
sequencer, the effective gas price is properly computed, and the
updated value will be used for subsequent transaction processing.

Vulnerability exploitation: An adversary can exploit the effective
gas price as a side-channel to determine whether the current exe-
cution is in the pre-execution stage or the sequencer.

In Fig. 6, we present a code snippet of a contract that exploits
the second vulnerability. By generating transactions that invoke

this contract, an adversary can launch our denial-of-sequencing
attack. Specifically, the DoS function in the contract takes the origi-
nally signed gas price as an argument, i.e., signedGasPrice (Line
2). During execution, the function compares the originally signed
gas price with the current effective gas price, i.e., tx.gasprice, to
determine whether the current execution is in the pre-execution
stage or the sequencer (Line 3). Notably, in Polygon zkEVM, when
inquiring about the current gas price using tx.gasprice, the effec-
tive gas price will be returned, which is the actual gas price applied
during transaction execution. When the originally signed gas price
matches the effective gas price, the contract recognizes that it is
executed in the pre-execution stage, and will perform benign oper-
ations (Line 4). Otherwise, the contract will intentionally trigger
illegal or partially illegal errors (Line 6), such as proof overflow
errors, leading to the transaction discarded.
(Partially) illegal errors: In exploiting Vulnerability #2, the ad-
versary triggers illegal or partially illegal errors during execution
in the sequencer, causing the transaction to be discarded.

In our example, we use proof overflow errors to illustrate the
vulnerability exploitation. Notably, various illegal and partially ille-
gal errors exist in practice, which can be exploited by attackers to
carry out our attack. For example, attackers can force a contract to
access an invalid memory region, triggering another illegal error,
ZKR_SM_MAIN_ADDRESS [39], which results in the transaction being
discarded. Moreover, since the limit for L2 block assembly is slightly
lower than the threshold for triggering proof overflow errors due to
certain preprocessing steps in the front of L2 blocks [51], attackers
can craft malicious transactions whose proof cost falls between
the two thresholds. In such cases, since the proof cost of the ma-
licious transactions exceeds the limit for L2 block assembly but
does not trigger proof overflow errors, the sequencer treats them as
invalid, raises a partially illegal error, and returns these malicious
transactions to the transaction pool for further processing.

5.2 Vulnerabilities related to incomplete check
We have identified two other vulnerabilities in Arbitrum and Poly-
gon zkEVM, which are related to incomplete check. By exploiting
the two vulnerabilities to launch our attack, an adversary can craft
malicious transactions that bypass the legality check, despite trig-
gering illegal or partially illegal errors during this process.
Vulnerability #3: Incomplete check in Arbitrum. This vulnera-
bility arises from an incomplete check on the comparison between
the maximum fee per gas and the maximum priority fee per gas in
the legality check of Arbitrum.

Following EIP-1559 [41], which modifies the transaction pricing
mechanism, the single gas price parameter specified by users in
Arbitrum has been replaced by two components: the base fee and
the tip. The base fee is dynamically adjusted based on network
congestion and is burned after the transaction is completed, while
the tip serves as an additional priority fee paid to validators and
miners to prioritize transaction inclusion in blocks [41].

Additionally, users can specify the maximum gas fee per unit of
gas, denoted as GasFeeCap, and the maximum priority fee per unit
of gas, denoted as GasTipCap, when signing transactions [41]. Dur-
ing transaction execution in the sequencer, the sequencer verifies
whether GasFeeCap exceeds GasTipCap. If this condition is violated,



CCS ’25, October 13–17, 2025, Taipei Zihao Li et al.

the sequencer raises an ErrTipAboveFeeCap error, and discards the
transaction. This restriction exists because if GasTipCap exceeds
GasFeeCap, the user will always be unable to pay the total priority
fee, compromising the transaction pricing mechanism [41]. How-
ever, the legality check in Arbitrum does not enforce this validation,
allowing transactions where GasTipCap exceeds GasFeeCap to pass.

Vulnerability exploitation: An adversary can craftmalicious trans-
actions by settingGasTipCap higher thanGasFeeCap. These transac-
tionswill bypass the legality check but trigger the ErrTipAboveFeeCap
error in the sequencer, ultimately causing them to be discarded.
Vulnerability #4: Incomplete check in Polygon zkEVM. This
vulnerability originates from an incomplete check on the compari-
son between the gas limit of layer 2 transactions and the gas limit
of layer 2 blocks in the legality check of Polygon zkEVM.

When signing layer 2 transactions, users can specify a gas limit
for each transaction. The gas limit denotes the maximum amount
of gas a user is willing to pay for a transaction, with each operation,
such as EVM opcodes, consuming a certain amount of gas [51].
Generally, more complex operations consume more gas.

Similar to Ethereum, each layer 2 block in Polygon zkEVM has a
maximum gas limit, which constrains the total gas consumption of
all transactions within the block [51]. Additionally, during transac-
tion execution in the sequencer, Polygon zkEVM verifies whether
the gas limit specified by a layer 2 transaction is lower than the gas
limit of a layer 2 block, and discards the transaction if this condition
is violated. However, the legality check in Polygon zkEVM does
not enforce this validation, allowing layer 2 transactions with gas
limits exceeding the gas limit of a layer 2 block to pass.

Vulnerability exploitation: An adversary can craftmalicious trans-
actions with gas limits exceeding the gas limit of a layer 2 block.
These transactions will bypass the legality check but are later identi-
fied as invalid during execution in the sequencer due to their illegal
gas limits, ultimately causing them to be discarded.

5.3 Optimize the attack effect
By exploiting the four identified vulnerabilities, an adversary can
craft malicious transactions that bypass the legality check but en-
counter illegal or partially illegal errors in the sequencer. In such
cases, the adversary can enforce the sequencer to process malicious
transactions that are ultimately discarded without incurring any
cost. By exhausting the computational resources of the sequencer,
the adversary can disrupt the liveness of layer 2 rollups.

To further optimize the attack effect, the adversary can incorpo-
rate time-consuming operations into themalicious transactions [48].
This optimization enhances the attack effect in two ways:
– First, the sequencer is forced to spend more time processing each
malicious transaction. Given that the time required for signing
transactions remains constant [65], the adversary can prolong the
time for the sequencer to be unusable even with a limited number
of malicious transactions, thereby amplifying the attack effect.
– Second, by increasing the processing time of malicious transac-
tions, the sequencer has less capacity to handle benign transactions.
Hence, even if benign transactions are still processed, the overall
obstruction to transaction processing is exacerbated.
Constructing time-consuming malicious transactions: The
key to constructing time-consuming malicious transactions is to

craft contracts that frequently execute inefficient opcodes. Ineffi-
cient opcodes are those that require longer execution times relative
to their gas costs [48, 65]. For example, prior studies have identified
several inefficient opcodes, e.g., SLOAD [36, 48] and EXTCODEHASH [48,
65]. These opcodes typically retrieve state data from blockchain
state storage on disk, necessitating intensive disk I/O operations
and thereby increasing their execution time.

After crafting contracts with inefficient opcodes, the adversary
can invoke themwithin malicious transactions to extend processing
time before triggering illegal or partially illegal errors. For example,
when exploiting the second vulnerability and invoking the mali-
cious contract in Fig. 6, if a malicious transaction recognizes that
execution is occurring in the sequencer (Line 3), it can first invoke
contracts containing inefficient opcodes to prolong processing time
before ultimately triggering illegal or partially illegal errors at Line
6, causing the malicious transaction to be discarded.
Attack effect’s extent. The incomplete check arises from inconsis-
tencies between the checks performed by the sequencer and those
conducted by legality check. Since the sequencer enforces checks
both at the initial part of transaction execution and after execution
(§3.3), attack effect’s extent (i.e., transaction execution time) varies
depending on when malicious transactions are discarded. Specif-
ically, if transactions are discarded at the initial part, the attack
effect cannot benefit from the optimization, because contract execu-
tion is not involved. Conversely, if transactions are discarded after
execution, the attack effect can be maximized through the optimiza-
tion. Notably, in both cases, layer 2 rollups’ liveness is disrupted,
as malicious transactions are prioritized over benign transactions
due to the configured high transaction fee parameters.

6 Evaluation
We evaluate the feasibility, cost, and impact of our attack on Arbi-
trum and Polygon zkEVM by answering the following four research
questions. RQ1: Is our attack feasible by crafting malicious invalid
transactions that exploit the four identified vulnerabilities in Arbitrum
and Polygon zkEVM? RQ2: What are the costs and impacts of our
denial of sequencing attack on Arbitrum and Polygon zkEVM? RQ3:
How effective is the proposed optimization in enhancing the effect of
our attack? RQ4: Can existing tools identify the four vulnerabilities
exploited by our attack to preemptively prevent it?
Experimental Setup. Our experiments are conducted on a 64-bit
machine equipped with 10 CPU cores and 128 GB memory. We
deploy vulnerable versions of Arbitrum and Polygon zkEVM in our
local environment to conduct our experiments. Notably, in the latest
releases of Arbitrum and Polygon zkEVM, the official teams have
confirmed our findings and resolved the identified vulnerabilities.
Additionally, we set up a private Ethereum testnet to serve as the
layer 1 blockchain for the two rollups. In the vulnerable versions
of the two layer 2 rollups, we instrument the legality check and
sequencer components to monitor our test transactions, determine
whether they are executed in the legality check or sequencer, and
record the execution results.

6.1 RQ1: Feasibility of our attack
As detailed in §5, we have identified four vulnerabilities in Arbitrum
and Polygon zkEVM, which can be exploited to construct malicious



Denial of Sequencing Attacks in Ethereum Layer 2 Rollups CCS ’25, October 13–17, 2025, Taipei

Table 1: Four variants of our attack against Arbitrum and
Polygon zkEVM, each exploiting a distinct vulnerability.

Variants Vulnerabilities Attack approach Vulnerable rollups

Attack1 Vulnerability #1 side-channel based Polygon zkEVM
Attack2 Vulnerability #2 side-channel based Polygon zkEVM
Attack3 Vulnerability #3 incomplete check based Arbitrum
Attack4 Vulnerability #4 incomplete check based Polygon zkEVM

invalid transactions for conducting our denial of sequencing attack
on on these vulnerable layer 2 rollups.

In Table 1, we categorize the four corresponding attack variants
against these vulnerable layer 2 rollups, each exploiting a differ-
ent vulnerability. Specifically, the first two attack variants, DoS1
and DoS2, leverage the side-channel based approach to conduct at-
tacks on Polygon zkEVM by exploiting the first two vulnerabilities,
respectively. The third attack variant, DoS3, employs the incom-
plete check based approach to attack Arbitrum by exploiting the
third vulnerability. The fourth attack variant, DoS4, also utilizes
the incomplete-check based approach to attack Polygon zkEVM by
exploiting the fourth vulnerability.

For each attack variant, the transaction construction process for
generating malicious invalid transactions consists of three steps, as
detailed below. This process is designed based on the vulnerability
exploitation described in §5.
– Step 1: Malicious contract deployment. For each attack variant, we
deploy the corresponding malicious contract if required. Specifi-
cally, for the first attack variant, we use the Yul language to develop
the malicious contract, as it provides fine-grained control over
contract execution. By leveraging Yul, we can precisely adjust the
proof cost for invoking the malicious contract to remain slightly
below the proof cost limit for a block, thereby constructing mali-
cious transactions by invoking the malicious contract to exploit
the first vulnerability. For the second attack variant, we deploy the
corresponding malicious contract based on the template in Fig. 6.
Additionally, within the malicious contract, we choose to trigger
the proof overflow error by adopting the contract deployed for
the first vulnerability exploitation. For the last two attack variants,
since these variants do not require contract invocation to exploit
the vulnerabilities, we do not deploy any malicious contract.
– Step 2: Initial allocation of cryptocurrency. We randomly generate
a series of malicious EOAs, and allocate a small amount of cryp-
tocurrency to each of them. Notably, conducting our attack does
not incur any cost to the adversary. However, the adversary must
hold several funds while submitting the transactions, as the initial
check stage in the legality check verifies whether the transaction
sender has sufficient funds to cover the transaction fees.
– Step 3: Signing malicious transactions. While signing the mali-
cious transactions, the malicious EOAs invoke the deployed mali-
cious contracts from the first step, and configure the corresponding
parameters to trigger the identified vulnerabilities. For example,
setting GasTipCap higher than GasFeeCap exploits the third vul-
nerability, while specifying gas limits exceeding the gas limit of a
layer 2 block triggers the fourth vulnerability. Each EOA signs n
malicious transactions. In our experiments, we set n to 5 to bypass
checks that prematurely discard transactions due to an excessive
number of pending transactions from a single EOA [37]. These

1 Contract AttackOptimizationTemplate {

2 function AttackOpt(uint32 i) public {

3 assembly {

4 for {} gt(i, 0) {i := sub(i, 1)}{

5 // OP: SLOAD or EXTCODESIZE

6 pop(OP(xor(blockhash(number ()), gas())))}}}}

Figure 7: Contract template for generating malicious trans-
actions that intensively execute inefficient opcodes.

malicious transactions are signed with incrementing nonce values,
and submitted sequentially in their nonce order.

To evaluate the feasibility of our attack, we follow the transac-
tion construction process detailed above to generate a total of 1,000
malicious transactions for each attack variant. We then submit the
malicious transactions for each variant individually to the corre-
sponding vulnerable layer 2 rollups, and monitor their execution
process and results. Finally, our experimental results demonstrate
that all malicious transactions across the four attack variants pass
the legality check, and are forwarded to the sequencer. However,
upon execution, the sequencer discards all malicious transactions.
Eventually, all these transactions are not included in layer 2 blocks.
Answer to RQ1: All attack variants are feasible, as malicious trans-
actions bypass the legality check, and are discarded by the sequencer.

6.2 RQ2: Effect of attack optimization
As discussed in §5.3, our attack effect can be enhanced by intensively
executing inefficient opcodes, which typically consume significant
time and resources due to numerous disk I/O operations. In such
cases, the sequencer is forced to spend more time in processing
each malicious transaction, leading to a more severe attack impact.
Prior studies have identified SLOAD and EXTCODESIZE as represen-
tative inefficient opcodes [36, 42, 48, 65]. In this subsection, we
evaluate the extent to which our attack’s effect can be enhanced by
intensively executing the two inefficient opcodes.

We generate the malicious transactions that intensively execute
the inefficient opcodes by adopting the contract templates in prior
studies [65]. During the attack, malicious transactions invoke the
AttackOpt function, leading to intensive execution of inefficient
opcodes. Specifically, as shown in Fig. 7, the contract template uti-
lizes Yul to implement a loop-based execution of inefficient opcodes
(Lines 4 - 6). Within the loop, OP can be replaced with either SLOAD
or EXTCODESIZE, depending on the inefficient opcode attackers in-
tend to execute. The loop iterates i times, where i is specified as a
parameter of AttackOpt function. Additionally, the contract tem-
plate employs BLOCKHASH and XOR to introduce randomness in the
operands of the inefficient opcodes. Notably, repeatedly accessing
the same state data results in caching the data in memory. In such
cases, executing inefficient opcodes does not involve intensive disk
I/O operations [19, 20]. To ensure sustained execution of inefficient
opcodes with intensive disk I/O operations, randomness in operand
selection is required, thereby persistently enhancing attack impact.

To obtain a more comprehensive characterization of attack effect
optimization with different levels of inefficient opcode execution,
we evaluate the execution time of optimized malicious transactions
under different gas costs (i.e., 105, 106, 107, and 3 × 107), and dif-
ferent types of inefficient opcodes (i.e., SLOAD and EXTCODESIZE).



CCS ’25, October 13–17, 2025, Taipei Zihao Li et al.

105 106 107 3 × 107

Gas cost

0.00

0.05

0.10

Ti
m

e 
co

st
 (s

) Baseline
SLOAD
EXTCODESIZE

(a) Execution time of malicious transactions on Arbitrum

105 106 107 3 × 107

Gas cost

0.0

0.5

1.0

1.5

Ti
m

e 
co

st
 (s

) Baseline
SLOAD
EXTCODESIZE

(b) Execution time of malicious transactions on Polygon zkEVM

Figure 8: Execution time of malicious transaction under different gas costs and inefficient opcodes.

Additionally, we employ a baseline strategy to construct malicious
transactions that involve only stack operations.

Notably, in some cases, gas cost cannot be set arbitrarily. For
example, when exploiting the first vulnerability, malicious trans-
actions must adjust their proof cost to be slightly lower than the
block’s proof cost limit. Hence, the gas cost also approaches the
block’s gas cost limit, as it is related to the proof cost.

In our experiments, we execute the malicious transactions 100
times for each combination of gas cost, opcode type, and layer 2
rollup, and record the execution time of each transaction. We dis-
play our results in Fig. 8. Specifically, while consuming 3 × 107 gas,
the optimization effect of malicious transactions reaches its peak.
The median execution time of malicious transactions under the
baseline strategy is 0.49 seconds on Polygon zkEVM and 0.056 sec-
onds on Arbitrum. Compared to the baseline, transactions involving
EXTCODESIZE consumes 1.14 seconds on Polygon zkEVM and 0.107
seconds on Arbitrum, increasing execution time by factors of 2.33
and 1.91, respectively. Similarly, transactions involving SLOAD take
1.07 seconds on Polygon zkEVM and 0.073 seconds on Arbitrum,
extending execution time by factors of 2.18 and 1.30, respectively.
Our results indicate that, for both inefficient opcodes across the
two rollups, malicious transactions involving EXTCODESIZE consis-
tently exhibit longer execution times than those involving SLOAD.
Compared to the baseline strategy, the execution time of malicious
transactions involving inefficient opcodes increases significantly
as the gas cost rises. Additionally, the optimization effect becomes
more pronounced with higher gas costs.
Answer to RQ2: The execution time of malicious transactions can
be extended by intensively executing inefficient opcodes.

6.3 RQ3: Attack impact and cost
In this subsection, we evaluate whether our attack can end-to-end
disable the processing of layer 2 transactions on the sequencer, and
examine the impact and cost of our attack in comparison with other
denial of service attacks in the Ethereum ecosystem.
End-to-end analysis. We collect historical benign transactions
from Arbitrum and Polygon zkEVM, and submit them to the corre-
sponding testing rollups while conducting our attack. During this
process, we monitor the benign transactions’ processing, and assess
when they are executed in the sequencer. According to our results,
while our attack is ongoing, benign transactions successfully pass
the legality check and are temporarily stored in transaction pools.

For Polygon zkEVM, the processing of benign transactions is
completely disabled, as the sequencer continues executing mali-
cious transactions. This occurs because the configured fee param-
eters of malicious transactions are higher than those of benign

transactions. Specifically, we scrape historical maximum fee param-
eters and set the malicious transaction fees to be ten times higher
than these maximum values. As a result, even when both benign
and malicious transactions co-exist in the transaction pool, the
sequencer prioritizes executing malicious transactions over benign
ones. Ultimately, our attack fully disables the sequencer, preventing
benign transactions from being processed until the attack ceases.

For Arbitrum, the processing of benign transactions is delayed
but not completely disabled. Specifically, the delay occurs as the
sequencer interleaves the execution of both benign and malicious
transactions. This happens because Arbitrum orders transactions
on a “first-come, first-serve” (FCFS) basis, allowing benign trans-
actions to be prioritized if they arrive before malicious ones, even
when they have lower fee parameters. However, during our attack,
Arbitrum’s liveness is still disrupted, as benign transactions expe-
rience delays due to previously submitted malicious transactions,
ultimately slowing down the transaction processing.
Comparison with related attacks. In Table 2, we compare our
denial of sequencing attack with other related denial of service
attacks in the Ethereum ecosystem in terms of their impact and
cost, facilitating a better understanding of our attack.

In general, these attacks target different vulnerable components,
either reducing transaction throughput or disabling specific vulner-
able components. Compared to the attacks that reduce transaction
throughput, our attack differs them in two key aspects: First, it can
completely disable the transaction processing procedure because
the sequencer in victim layer 2 rollups operates in a centralized
manner. Second, our attack incurs zero cost for the adversary, as the
identified vulnerabilities allow the adversary to deterministically
craft non-packable transactions that bypass the legality check. In
addition, compared to the attacks with zero cost, our attack can
disrupt the liveness of the entire victim system (i.e., layer 2 rollups),
ultimately disabling the processing of layer 2 transactions.
Answer to RQ3: All attack variants disable or partially disable the
processing of benign transactions in L2 rollups end-to-end at zero cost.

6.4 RQ4: Vulnerability awareness
In this subsection, we explore whether existing tools can be utilized
to potentially prevent our denial of sequencing attack by detecting
the vulnerabilities exploited in our attack.
Tool selection. We select two open-source tools, Fluffy [67] and
LOKI [43], to assess whether they can detect the vulnerabilities
exploited in our attack. To our best knowledge, they are among the
most relevant for identifying vulnerabilities in blockchain clients,
particularly those related to the vulnerabilities we have identified.
We set up both tools with the necessary adaptations to conduct



Denial of Sequencing Attacks in Ethereum Layer 2 Rollups CCS ’25, October 13–17, 2025, Taipei

Table 2: Impact and cost comparison of denial of service attacks in Ethereum ecosystem

Attack Vulnerable components Attack impact Financial cost

Perez et al. [48] Gas pricing model Reduce transaction throughput Transaction fees
Li et al. [36] RPC services Latency in RPC services Zero cost
Li et al. [37] Transaction pool Disable target transaction pools Transaction fees
Yaish et al. [65] Censorship mechanism Reduce transaction throughput Transaction fees
He et al. [21] Gas pricing model Degrade blockchain performance Transaction fees
Tsuchiya et al. [61] Modified transaction validation Amplify network traffic Zero cost
Denial of Sequencing Legality check in L2 rollups Disable processing of L2 transactions Zero cost

testing on the vulnerable L2 rollups, including adjusting test trans-
actions’ format to ensure compatibility with target L2 rollups. Addi-
tionally, to ensure reliable results, we refrain from modifying their
core methodologies for generating test transactions. Notably, there
are other related tools [39] that have not released their code. We
choose to compare and discuss them qualitatively in Appendix D.

To determine whether the vulnerabilities we identified, or other
similar vulnerabilities that can be exploited to conduct our attack,
are triggered by the tools, we instrument the legality check and
sequencer components in the two vulnerable layer 2 rollups. During
testing, we consider a desired vulnerability to be triggered if the
tools can continuously generate m transactions that pass the legal-
ity check but are ultimately discarded by the sequencer. We choose
this metric for identifying whether the desired vulnerabilities are
triggered rather than others, such as transaction throughput, be-
cause the tools may either generate invalid transactions that are
discarded by the legality check or trigger unexpected errors that
cause the sequencer to crash. While in these scenarios, the trans-
action throughput may be reduced to zero, the root cause is not
related to the triggering of our identified vulnerabilities or similar
vulnerabilities. In such cases, the tools are unable to prevent our
attack by preemptively identifying the underlying vulnerabilities.

In our experiments, we run the two tools for 12 hours on each of
the vulnerable layer 2 rollups, i.e., Arbitrum and Polygon zkEVM.
Additionally, we setm to 10 to determinewhether the vulnerabilities
exploitable for conducting our attack are triggered. Finally, our
experimental results show that both tools are unable to detect
the four vulnerabilities identified by us, as well as other similar
vulnerabilities. The main reason for their incapability is that the
vulnerabilities exploited in our attack are more challenging to be
detected. Specifically, to disrupt the liveness of layer 2 rollups by
triggering the vulnerabilities identified by us (or similar ones), the
tools must continuously generate test transactions that can trigger
these vulnerabilities. Unfortunately, these tools mainly focus on
vulnerabilities that can be triggered by a single transaction, such
as those that cause the sequencer to crash. As a result, the tools fail
to continuously generate the desired test transactions because the
execution feedback does not match their expectations.
Answer to RQ4: Existing tools fail to identify vulnerabilities that
can be exploited to construct malicious transactions for our attack,
rendering them incapable of preemptively preventing it.

7 Possible mitigations
Even if the four identified vulnerabilities are fixed, our attack re-
mains a threat to layer 2 rollups due to its generalizability (as

discussed in §8). For example, if attackers identify similar vulner-
abilities in a layer 2 rollup’s legality check, they can still disrupt
the victim layer 2 rollup’s liveness by crafting malicious invalid
transactions to exhaust the sequencer’s computational resources.
In this section, we explore three potential mitigations against our
attack, and discuss their respective strengths and weaknesses.
Reputation based transaction ordering. In our evaluation of the
attack effect on Arbitrum (RQ3 in §6.3), we observe that, while Ar-
bitrum’s liveness is disrupted, the attack effect is mitigated to some
extent (i.e., the processing of benign transactions is not entirely
disabled). This is because Arbitrum employs a FCFS transaction
ordering mechanism. However, this mechanism has a critical limita-
tion, i.e., benign transactions submitted after malicious transactions
will experience delays until the attack subsides.

In contrast to FCFS mechanism, a reputation based transaction
ordering mechanism can further mitigate the attack effect by prior-
itizing the processing of benign transactions over malicious ones.
Specifically, to mitigate the attack effect, such a mechanism requires
(i) rewarding L2 users who actively submit benign transactions, and
(ii) penalizing those who frequently submit invalid transactions
(i.e., transactions resembling malicious transactions that cannot be
included in blocks). Additionally, new L2 users who have not yet
submitted transactions should have default reputation scores higher
than those of users who frequently submit invalid transactions.

A reputation based mechanism that satisfies these requirements
offers advantages over FCFS mechanism in mitigating the attack
effect. Specifically, even if attackers initially prepare multiple EOAs
with high reputation scores (by submitting benign transactions),
their reputation scores will progressively decrease during the attack,
because attackers must continuously submit malicious transactions
to sustain the attack (§6.3). Meanwhile, the reputation scores of
benign users will increase, enabling their transactions to be pri-
oritized over those of attackers. Notably, even in the worst-case
scenario for a reputation based mechanism, where all benign users
are new users, its mitigating effect will be no worse than that of
FCFS mechanism. This is because, under a reputation based mecha-
nism, benign transactions of new users sent after malicious ones
can still be prioritized, as attackers’ reputation scores can be pe-
nalized below the default score of new users. In contrast, FCFS
mechanism does not offer such mitigation, making it inherently
less effective in countering the attack when benign transactions
are sent after malicious ones. However, implementing a reputation
based mechanism incurs extra computational and storage over-
head, which can impact the performance of L2 rollups. Notably, our
above discussion is primarily qualitative. For layer 2 protocols that
consider adopting it, we recommend conducting a comprehensive
quantitative analysis to assess its trade-offs in practice.



CCS ’25, October 13–17, 2025, Taipei Zihao Li et al.

Penalty rationality. We acknowledge that the penalty strategy may
appear restrictive, potentially leading to honest users being wrong-
fully penalized. For honest users who occasionally submit invalid
transactions, the punishment remains reasonable, as it only delays
their transaction processing rather than blocking it entirely, thereby
minimizing the negative impact. For honest users who frequently
submit invalid transactions triggering partially illegal errors, dis-
tinguishing them from malicious users exhibiting similar behaviors
is inherently challenging. In such cases, the penalty strategy can
serve as a trade-off, for example, by selectively whitelisting certain
errors like reaching the block limit, to balance mitigating harm
to benign users with protecting against attackers. Nevertheless,
even with such adjustments, the strategy may still inadvertently
disincentivize honest users from actively participating in L2 rollups.
Formal verification methods. Formal verification methods are
known to used for rigorously proving the behavioral consistency
and equivalence between different programs [33].

Formal verification methods are feasible solutions for mitigat-
ing our attack by identifying vulnerabilities that can be exploited.
This is because the root cause of malicious transactions bypassing
the legality check but being discarded by the sequencer lies in the
discrepancies between how the legality check and the sequencer
handle transactions. Specifically, malicious transactions, which are
crafted using the side-channel based approach, exploit vulnerabili-
ties arising from differences in transaction execution environments
between the legality check and the sequencer. Besides, malicious
transactions, which are crafted using the incomplete check based
approach, exploit vulnerabilities caused by inconsistencies in the
checks performed by the legality check and the sequencer. Hence,
formal verification is viable by eliminating discrepancies in transac-
tion handling between the legality check and the sequencer, thereby
removing vulnerabilities that can be exploited in our attack.

However, transaction execution involve complex execution logic,
particularly in zkExecutor, which incorporates extra logic for gener-
ating zero-knowledge proofs. Hence, formal verification may strug-
gle to comprehensively explore the entire state space. If certain
portions of the state space remain unexplored, formal verification
may fail to detect vulnerabilities that can be exploited in our attack.
Differential testing. Differential testing is an automated software
testing technique that compares the behavior and outputs of two
programs implementing the same functionality on identical inputs
to identify discrepancies indicative of vulnerabilities [18].

Differential testing is a feasible solution to mitigating our at-
tack for reasons similar to formal verification methods, i.e., their
ability to identify vulnerabilities exploitable by our attack by un-
covering inconsistencies or incompleteness between the legality
check and the sequencer. However, differential testing is subject
to both unsoundness and incompleteness, and its findings must
be manually validated. To effectively uncover the specific vulner-
abilities exploited by our attack, conventional differential testing
must be appropriately tailored in three aspects. First, the execution
behaviors and outputs of the sequencer and the legality check must
be aligned to avoid false positives, as these two components do
not implement exactly the same functionality. For example, the
sequencer includes additional logic for assembling transactions
into blocks and submitting block batches to layer 1 blockchain.
Second, test transactions need to be mutated to explore diverse

execution behaviors in both sequencer and legality check, thereby
increasing the likelihood of uncovering discrepancies and potential
vulnerabilities. Third, execution feedback should drive the muta-
tion process, guiding differential testing to continuously trigger the
vulnerabilities necessary for launching our attack (RQ4 in §6.4).

8 Discussion
Due to page limits, we focus here on our attack’s generality, dif-
ferences between resource exhaustion attacks in L1 and L2, and
ethical consideration, with the rest part provided in Appendix B.
Our attack’s generality. Our attack pattern is generalizable, and
poses threats to other L2 rollups for three reasons. First, it tar-
gets L2 rollups whose transaction processing includes the legality
check, which is widely adopted in existing L2 rollups to filter out
invalid transactions before they reach the sequencer. Second, the
legality check inherently lacks completeness in filtering out all in-
valid transactions, making the sequencer vulnerable to processing
non-packable transactions. For example, certain errors can only be
determined at runtime within sequencer. Notably, the implementa-
tion vulnerabilities exploited by our attack stem from sources of
incompleteness in the legality check that allow an adversary to de-
terministically construct invalid transactions that bypass the legal-
ity check but are ultimately discarded by the sequencer. Third, due
to the tight coupling between L2 components, the implementation
vulnerabilities exploitable by our attack are likely to be introduced
and remain unnoticed [39], even when using testing tools (RQ4).

Moreover, our attack variant that specifically exploits the inher-
ent incompleteness of the legality check is feasible. For example, the
variant can exploit the side-channel based approach proposed by Li
et al. [39], where certain errors are triggered under runtime condi-
tions. However, this variant suffers from two limitations compared
to our main attack: (1) the adversary cannot deterministically craft
non-packable transactions, and (2) launching such an attack would
incur financial costs for the adversary. Nonetheless, this variant still
poses threats to layer 2 protocols, as it can exhaust computational
resources, albeit at a financial cost to the adversary. Notably, the
cost can be further decreased by carefully crafting contract logic to
terminate execution early when the runtime conditions for error
triggering are not met, thereby reducing overall gas consumption.
Differences between resource exhaustion attacks in L1 and
L2. The attack pattern that exploits inconsistencies or incomplete-
ness in pre-validation to consume resources before final rejection
exists in both layer 1 and layer 2 environments. However, due to
differences in their system models, particularly the centralization
of transaction execution and block production in layer 2, the con-
sequences of such attacks vary significantly, motivating attackers
to pursue different targets and outcomes. For example, in layer 1,
attacks such as the DETER attack [37] and the blockchain amplifica-
tion attack [61] allow adversaries to disrupt the liveness of a single
node or a subset of the network. In contrast, our attack exploits the
centralized sequencer model in layer 2 environment to disrupt the
entire layer 2 system, causing no transactions or only a minimal
number of benign transactions to be processed.
Ethical consideration.We confined the attack evaluation to our
local environment, ensuring that our experiments did not disrupt
external entities. To prevent potential exploitation, we exclusively



Denial of Sequencing Attacks in Ethereum Layer 2 Rollups CCS ’25, October 13–17, 2025, Taipei

disclosed the vulnerabilities to Arbitrum and Polygon zkEVM teams
through Immunefi platform [24]. Moreover, the technical details
of vulnerability exploitation were not made publicly available to
ensure attackers cannot exploit them before patches were in place.

9 Related work
Related studies can be categorized into three classes, i.e., attacks
against layer 2 rollups, security enhancement for layer 2 rollups,
and attacks against Ethereum. We detail them in Appendix C.

10 Conclusion
Our study brings to light the weaknesses of the legality check in
mitigating security threats to Ethereum layer 2 rollups arising from
their centralized nature. By uncovering four critical vulnerabilities
in the legality check of twowidely used layer 2 rollups, i.e., Arbitrum
and Polygon zkEVM, we demonstrate that an adversary can exploit
these vulnerabilities to launch the denial of sequencing attack to
disrupt the liveness of the targeted layer 2 rollups at zero cost.

Acknowledgements
The authors thank the anonymous reviewers for their construc-
tive comments. This work is partly supported by Hong Kong RGC
Projects (PolyU15224121, PolyU15231223), HKRGCGrant for Theme-
based Research Scheme Project T43-513/23-N, National Natural Sci-
ence Foundation of China under Grant (No.62172301, No.62332004),
and Sichuan Provincial Natural Science Foundation for Distin-
guished Young Scholars under Grant No.2023NSFSC1963.

References
[1] 2024. Our full paper with the appendix. https://zzzihao-li.github.io/.
[2] Arbitrum. 2025. Arbitrum layer 2 protocol. https://arbitrum.io/.
[3] Arbitrum. 2025. Arbitrum Nitro. https://github.com/OffchainLabs/nitro/.
[4] Arbitrum. 2025. Arbitrum transaction chargingmechanism. https://docs.arbitrum.

io/how-arbitrum-works/gas-fees.
[5] Mirko Bez, Giacomo Fornari, and Tullio Vardanega. 2019. The scalability chal-

lenge of ethereum: An initial quantitative analysis. In IEEE International Confer-
ence on Service-Oriented System Engineering.

[6] Stefanos Chaliasos, Denis Firsov, and Benjamin Livshits. 2024. Towards a formal
foundation for blockchain rollups. arXiv (2024).

[7] Stefanos Chaliasos, Itamar Reif, Adrià Torralba-Agell, Jens Ernstberger, Assimakis
Kattis, and Benjamin Livshits. 2024. Analyzing and Benchmarking ZK-Rollups.
AFT (2024).

[8] Yang Chen, Zhongxin Guo, Runhuai Li, Shuo Chen, Lidong Zhou, Yajin Zhou,
and Xian Zhang. 2021. Forerunner: Constraint-based speculative transaction
execution for ethereum. In SOSP.

[9] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin,
and Beng Chin Ooi. 2019. Towards scaling blockchain systems via sharding. In
SIGMOD.

[10] Dipanjan Das, Priyanka Bose, Nicola Ruaro, Christopher Kruegel, and Giovanni
Vigna. 2022. Understanding security issues in the NFT ecosystem. In CCS.

[11] Martin Derka, Jan Gorzny, Diego Siqueira, Donato Pellegrino, Marius Guggenmos,
and Zhiyang Chen. 2024. Sequencer Level Security. arXiv (2024).

[12] Luca Donno. 2022. Optimistic and validity rollups: Analysis and comparison
between optimism and starknet. arXiv (2022).

[13] Yue Duan, Xin Zhao, Yu Pan, Shucheng Li, Minghao Li, Fengyuan Xu, and Mu
Zhang. 2022. Towards automated safety vetting of smart contracts in decentral-
ized applications. In CCS.

[14] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, Julia Hesse, and Kristina
Hostáková. 2019. Multi-party virtual state channels. In EUROCRYPT.

[15] Christof Ferreira Torres, Albin Mamuti, Ben Weintraub, Cristina Nita-Rotaru,
and Shweta Shinde. 2024. Rolling in the shadows: Analyzing the extraction of
mev across layer-2 rollups. In CCS.

[16] Finbold. 2022. Vitalik Buterin admits transaction fees are huge prob-
lem. https://finbold.com/vitalik-buterin-admits-fees-are-a-huge-problem-for-
ethereums-usability/.

[17] Jan Gorzny, Lin Po-An, and Martin Derka. 2022. Ideal properties of rollup escape
hatches. In DICG.

[18] Muhammad Ali Gulzar, Yongkang Zhu, and Xiaofeng Han. 2019. Perception and
practices of differential testing. In ICSE-SEIP.

[19] Zheyuan He, Zihao Li, Jiahao Luo, Feng Luo, Junhan Duan, Jingwei Li, Shuwei
Song, Xiapu Luo, Ting Chen, and Xiaosong Zhang. 2025. Auspex: Unveiling
Inconsistency Bugs of Transaction Fee Mechanism in Blockchain. In USENIX
Security.

[20] Zheyuan He, Zihao Li, Ao Qiao, Jingwei Li, Feng Luo, Sen Yang, Gelei Deng,
Shuwei Song, Xiaosong Zhang, Ting Chen, and Xiapu Luo. 2025. Maat: Analyzing
and Optimizing Overcharge on Blockchain Storage. In USENIX FAST.

[21] Zheyuan He, Zihao Li, Ao Qiao, Xiapu Luo, Xiaosong Zhang, Ting Chen, Shuwei
Song, Dijun Liu, and Weina Niu. 2024. NURGLE: Exacerbating Resource Con-
sumption in Blockchain State Storage via MPT Manipulation. arXiv (2024).

[22] Hwanjo Heo, Seungwon Woo, Taeung Yoon, Min Suk Kang, and Seungwon Shin.
2023. Partitioning Ethereum without Eclipsing It.. In NDSS.

[23] Jordi Herrera-Joancomartí, Guillermo Navarro-Arribas, Alejandro Ranchal-
Pedrosa, Cristina Pérez-Solà, and Joaquin Garcia-Alfaro. 2019. On the difficulty
of hiding the balance of lightning network channels. In AsiaCCS.

[24] Immunefi. 2025. Bug bounty program of Immunefi platform. https://immunefi.
com/bug-bounty-program/

[25] Kamil Jezek. 2021. Ethereum data structures. arXiv (2021).
[26] Don Johnson, Alfred Menezes, and Scott Vanstone. 2001. The elliptic curve digital

signature algorithm. International journal of information security (2001).
[27] Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S Matthew Weinberg, and Ed-

ward W Felten. 2018. Arbitrum: Scalable, private smart contracts. In USENIX
Security.

[28] Dimitris Karakostas, Aggelos Kiayias, and Thomas Zacharias. 2024. Blockchain
bribing attacks and the efficacy of counterincentives. In CCS.

[29] Dodo Khan, Low Tang Jung, and Manzoor Ahmed Hashmani. 2021. Systematic
literature review of challenges in blockchain scalability. Applied Sciences (2021).

[30] Adrian Koegl, Zeeshan Meghji, Donato Pellegrino, Jan Gorzny, and Martin Derka.
2023. Attacks on rollups. In DICG.

[31] l2beat. 2025. Statistics on the total value locked in popular layer 2 rollups.
https://l2beat.com/scaling/tvs.

[32] Offchain Labs. 2023. Solutions to Delay Attacks on Rollups. https://medium.com/
offchainlabs/solutions-to-delay-attacks-on-rollups-434f9d05a07a.

[33] David Lacey, Neil D Jones, Eric Van Wyk, and Carl Christian Frederiksen. 2002.
Proving correctness of compiler optimizations by temporal logic. ACM SIGPLAN
Notices (2002).

[34] S Latha and Sinthu Janita Prakash. 2017. A survey on network attacks and
Intrusion detection systems. In ICACCS.

[35] Jiasun Li. 2023. On the security of optimistic blockchain mechanisms. ssrn (2023).
[36] Kai Li, Jiaqi Chen, Xianghong Liu, Yuzhe Richard Tang, XiaoFeng Wang, and

Xiapu Luo. 2021. As Strong As Its Weakest Link: How to Break Blockchain DApps
at RPC Service.. In NDSS.

[37] Kai Li, Yibo Wang, and Yuzhe Tang. 2021. Deter: Denial of ethereum txpool
services. In CCS.

[38] Zihao Li, Zheyuan He, Xiapu Luo, Ting Chen, and Xiaosong Zhang. 2025. Un-
veiling Financially Risky Behaviors in Ethereum ERC20 Token Contracts. CJE
(2025).

[39] Zihao Li, Xinghao Peng, Zheyuan He, Xiapu Luo, and Ting Chen. 2024. fAmulet:
Finding Finalization Failure Bugs in Polygon zkRollup. In CCS.

[40] Haoran Lin, Hang Feng, Yajin Zhou, and Lei Wu. 2025. ParallelEVM: Operation-
Level Concurrent Transaction Execution for EVM-Compatible Blockchains. In
EuroSys.

[41] Yulin Liu, Yuxuan Lu, Kartik Nayak, Fan Zhang, Luyao Zhang, and Yinhong
Zhao. 2022. Empirical analysis of eip-1559: Transaction fees, waiting times, and
consensus security. In CCS.

[42] Feng Luo, Huangkun Lin, Zihao Li, Xiapu Luo, Ruijie Luo, Zheyuan He, Shuwei
Song, Ting Chen, and Wenxuan Luo. 2024. Towards Automatic Discovery of
Denial of Service Weaknesses in Blockchain Resource Models. In CCS.

[43] Fuchen Ma, Yuanliang Chen, Meng Ren, Yuanhang Zhou, Yu Jiang, Ting Chen,
Huizhong Li, and Jiaguang Sun. 2023. LOKI: State-Aware Fuzzing Framework for
the Implementation of Blockchain Consensus Protocols.. In NDSS.

[44] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and
Matteo Maffei. 2018. Anonymous multi-hop locks for blockchain scalability and
interoperability. ePrint (2018).

[45] Yuval Marcus, Ethan Heilman, and Sharon Goldberg. 2018. Low-resource eclipse
attacks on ethereum’s peer-to-peer network. ePrint (2018).

[46] Subhra Mazumdar, Prabal Banerjee, Abhinandan Sinha, Sushmita Ruj, and Bi-
mal Kumar Roy. 2022. Strategic analysis of griefing attack in Lightning Network.
TNSM (2022).

[47] Ulysse Pavloff, Yackolley Amoussou-Guenou, and Sara Tucci-Piergiovanni. 2024.
Byzantine attacks exploiting penalties in Ethereum PoS. In DSN.

[48] Daniel Perez and Benjamin Livshits. 2020. Broken metre: Attacking resource
metering in EVM. NDSS (2020).

[49] Cristina Pérez-Sola, Alejandro Ranchal-Pedrosa, Jordi Herrera-Joancomartí,
Guillermo Navarro-Arribas, and Joaquin Garcia-Alfaro. 2020. Lockdown: Balance
availability attack against lightning network channels. In FC.

https://zzzihao-li.github.io/
https://arbitrum.io/
https://github.com/OffchainLabs/nitro/
https://docs.arbitrum.io/how-arbitrum-works/gas-fees
https://docs.arbitrum.io/how-arbitrum-works/gas-fees
https://finbold.com/vitalik-buterin-admits-fees-are-a-huge-problem-for-ethereums-usability/
https://finbold.com/vitalik-buterin-admits-fees-are-a-huge-problem-for-ethereums-usability/
https://immunefi.com/bug-bounty-program/
https://immunefi.com/bug-bounty-program/
https://l2beat.com/scaling/tvs
https://medium.com/offchainlabs/solutions-to-delay-attacks-on-rollups-434f9d05a07a
https://medium.com/offchainlabs/solutions-to-delay-attacks-on-rollups-434f9d05a07a


CCS ’25, October 13–17, 2025, Taipei Zihao Li et al.

[50] Polygon. 2025. Polygon zkEVM. https://github.com/0xpolygonhermez.
[51] Polygon. 2025. Polygon zkEVM layer 2 protocol. https://polygon.technology/

polygon-zkevm.
[52] Soujanya Ponnapalli, Aashaka Shah, Souvik Banerjee, Dahlia Malkhi, Amy Tai,

Vijay Chidambaram, and Michael Wei. 2021. RainBlock: Faster transaction
processing in public blockchains. In USENIX ATC.

[53] Kaihua Qin, Liyi Zhou, and Arthur Gervais. 2022. Quantifying blockchain ex-
tractable value: How dark is the forest?. In IEEE SP.

[54] Antoine Riard and Gleb Naumenko. 2020. Time-dilation attacks on the lightning
network. arXiv (2020).

[55] Muhammad Saad and David Mohaisen. 2023. Three birds with one stone: Efficient
partitioning attacks on interdependent cryptocurrency networks. In IEEE SP.

[56] Tanusree Sharma, Yujin Potter, Kornrapat Pongmala, HenryWang, AndrewMiller,
Dawn Song, and Yang Wang. 2024. Unpacking how decentralized autonomous
organizations (daos) work in practice. In ICBC.

[57] Dongxian Shi, Xiaoqing Wang, Ming Xu, Liang Kou, and Hongbing Cheng. 2023.
RESS: A reliable and effcient storage scheme for bitcoin blockchain based on
raptor code. CJE (2023).

[58] Jian Su and Mengnan Jiang. 2023. A hybrid entropy and blockchain approach for
network security defense in SDN-based IIoT. CJE (2023).

[59] Zhiyuan Sun, Zihao Li, Xinghao Peng, Xiapu Luo, Muhui Jiang, Hao Zhou, and
Yinqian Zhang. 2024. DoubleUp Roll: Double-spending in Arbitrum by Rolling It
Back. In CCS.

[60] Massimiliano Taverna and Kenneth G Paterson. 2023. Snapping snap sync:
practical attacks on go Ethereum synchronising nodes. In USENIX Security.

[61] Taro Tsuchiya, Liyi Zhou, Kaihua Qin, Arthur Gervais, and Nicolas Christin. 2024.
Blockchain Amplification Attack. arXiv (2024).

[62] Gijs Van Dam, Rabiah Abdul Kadir, Puteri NE Nohuddin, and Halimah Badioze
Zaman. 2020. Improvements of the balance discovery attack on lightning network
payment channels. In IFIP SEC.

[63] Sam Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Dominik Harz,
and William Knottenbelt. 2022. Sok: Decentralized finance (defi). In ACM AFT.

[64] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum yellow paper (2014).

[65] Aviv Yaish, Kaihua Qin, Liyi Zhou, Aviv Zohar, and Arthur Gervais. 2024. Specu-
lative Denial-of-Service Attacks In Ethereum. In USENIX Security.

[66] Aviv Yaish, Gilad Stern, and Aviv Zohar. 2023. Uncle maker:(time) stamping out
the competition in ethereum. In CCS.

[67] Youngseok Yang, Taesoo Kim, and Byung-Gon Chun. 2021. Finding consensus
bugs in ethereum via multi-transaction differential fuzzing. In OSDI.

[68] Polygon zkEVM. 2023. A disclosed vulnerability in Polygon zkEVM. https:
//x.com/0xiczc/status/1662090451493740545.

A Background of blockchain scalability issues
A blockchain is a distributed ledger consisting of a continuously ex-
panding list of transactions, organized into blocks that are securely
linked using cryptographic hashes [64]. Permissionless blockchains
are governed by a peer-to-peer (P2P) network, enabling them to
operate as public distributed ledgers. Nodes within the P2P network
collectively adhere to a consensus protocol to validate and incorpo-
rate new blocks of transactions [64]. However, the time-consuming
protocols and mechanisms inherent to blockchains result in signifi-
cant scalability limitations, restricting most blockchains to process-
ing only tens of transactions per second [52].

Ethereum, as a representative blockchain, is the first to introduce
smart contracts, which are self-executing programs with prede-
fined logic [64]. Smart contracts enable a sophisticated and syn-
ergistic set of functionalities by interacting with each other and
the blockchain’s state, thereby facilitating the development of de-
centralized applications (Dapps) that use smart contracts as their
backend logic [13]. Dapps enable numerous users to engage with
Ethereum for various purposes, such as decentralized finance, non-
fungible tokens, and stablecoins [13]. However, the intensive use
of Dapps exacerbates Ethereum scalability limitations [53]. For ex-
ample, user engagement in the Dapp Fomo3D caused transaction
congestion spanning over 66 consecutive blocks [53].

B Additional discussion
Identification of (partially) illegal errors. Illegal and partially
illegal errors a crucial role in our attack strategy. In some cases,
adversaries must exploit such errors to successfully carry out our
attack (e.g., the proof overflow error triggered in Vulnerability #2
in §5.1). These errors can be identified by examining the error-
handling logic within transaction processing in legality check and
the sequencer. If such logic discards the transaction directly without
further processing, the corresponding error is considered an illegal
error. In contrast, if the error-handling logic allows the transac-
tion to return to the transaction pool for further processing, the
corresponding error is recognized as a partially illegal error.
Unfair comparison for attack impact and cost. The comparison
between our attack and related denial of service attacks in Ethereum
ecosystem in terms of attack impact and cost in RQ3 (§6.3) is not
entirely fair. This is due to the differences in the victim systems
(e.g., Ethereum and layer 2 rollups), which result in discrepancies
in attack impact and cost. For example, while both attacks reduce
transaction throughput, the impact varies. Notably, we select these
denial of service attacks because they are the most relevant attacks
to our attack, and we do not intend to claim that our attack is
superior to them. Instead, we conduct this comparison to provide a
clearer understanding of the impact and cost of our attack.
Vulnerability fixes. The four identified vulnerabilities have been
addressed by the respective official teams, and the fixes fall into
two categories. Vulnerabilities #1 and #2, which are related to side-
channels, are addressed by aligning inconsistent behaviors between
the legality check and the sequencer, e.g., aligning the effective
gas price returned by GASPRICE during transaction execution in
both components. Vulnerabilities #3 and #4, which are related to
incomplete check, are resolved by incorporating the missing logic.
For example, to fix Vulnerability #4, the legality check is updated
to discard transactions whose gas limit exceeds that of an L2 block.

C Related work
Related studies to our work can be categorized into three classes,
i.e., attacks against layer 2 rollups, security enhancement for layer
2 rollups, and attacks against Ethereum.
Attacks against layer 2 rollups. Current research focuses on un-
covering attacks targeting Bitcoin lighting network and Ethereum
optimistic layer 2 rollups. Malavolta et al. [44] reveal wormhole
attacks, which target payment-channel networks, allowing adver-
saries to steal payment fees from honest participants along the
payment path. Griefing attacks [46] aim to stall payment networks
by exhausting channel capacity. Such attacks prevent benign partic-
ipants from processing further transactions, leading to a temporary
loss of funds, decreased network throughput, and routing disrup-
tions. Balance lockdown attacks [49] affect the ability of a victim
node to successfully participate in payment routing by blocking
their balance funds. Balance discovery attacks [23, 62] target to
disclose individual balances of users in payment channel network,
thus compromising users’ privacy. Riard et al. [54] disclose time-
dilation attacks, which prolong the time interval for victims to
be aware of new blocks by network isolation and block delivery
delays. By leveraging the time-dilation attacks, an adversary can
steal funds from victims’ payment channels. Offchain Labs examine
the impact of delay attacks [32], which incur the delay of layer 2

https://github.com/0xpolygonhermez
https://polygon.technology/polygon-zkevm
https://polygon.technology/polygon-zkevm
https://x.com/0xiczc/status/1662090451493740545
https://x.com/0xiczc/status/1662090451493740545


Denial of Sequencing Attacks in Ethereum Layer 2 Rollups CCS ’25, October 13–17, 2025, Taipei

state confirmation on layer 1 blockchain. In the worst-case scenario,
adversaries can repeatedly launch such attacks, causing continuous
rollbacks and halting the progress of layer 2 rollups. Sun et al. [59]
uncover double spending attacks on layer 2 rollups, which can be
exploited by strategically triggering state rollbacks through the
injection of manipulable delays.
Security enhancement in layer 2 rollups. Researchers have also
made efforts to propose new techniques for enhancing the security
of layer 2 rollups. Derka et al. [11] propose Sequencer Level Secu-
rity protocol to enhance transaction security in layer 2 rollups with
centralized sequencers. This protocol empowers users to define
customized invariants for detecting potentially malicious transac-
tions, enabling more granular security measures for layer 2 systems.
Chaliasos et al. [6] present a formal analysis for key functionalities
of layer 2 rollups, including forced transaction queues, safe black-
listing, and upgradeability, using the Alloy specification language.
Through this analysis, the authors identify potential vulnerabili-
ties in layer 2 rollups and propose enhanced models to improve
security and censorship resistance. Koegl et al. [30] explore various
security enhancements for layer 2 rollups, including scalable es-
cape hatches, aimed at strengthening their security across multiple
dimensions. fAmulet [39] is proposed as a testing tool to detect final-
ization failure bugs in zero-knowledge layer 2 rollups by leveraging
behavior-guided fuzzing. Such bugs can disrupt the transaction
finalization process, thereby undermining the liveness of layer 2
rollups. Gorzny et al. [17] outline a framework for evaluating escape
hatches in layer 2 rollups. Through this framework, the authors
highlight potential issues and propose a wishlist of properties that
an escape hatch mechanism should possess.
Attacks against Ethereum. Attacks targeting Ethereum can be
classified into three categories according to the attack surface, i.e.,
the network layer, the consensus layer, and the execution layer.
– Attacks on network layer: Marcus et al. [45] present eclipse at-
tacks on Ethereum where attackers monopolize all of the victim’s
incoming and outgoing connections, effectively isolating the victim
from the rest of its peers in the network. Heo et al.[22] present
partitioning attacks that isolate an Ethereum full node from the rest
of the network for hours without needing to occupy (or eclipse)
all of the target’s peer connections. Saad et al. [55] introduce prac-
tical partitioning attacks targeting cryptocurrencies that contain
shared network resources. Taverna et al. [60] present attacks tar-
geting the chain synchronization, where attackers controlling a
small fraction of the network mining power can induce synchro-
nizing nodes to deviate from consensus, eventually leading them
to operate on an adversary-controlled network. Li et al. [37] design
low-cost denial-of-service attacks targeting Ethereum’s transac-
tion handling mechanisms, where attackers can disable a remote
Ethereum node’s transaction pool, disrupting critical downstream
services. Yaish et al. [65] present denial-of-service attacks where
attackers craft malicious transactions to decouple the workload im-
posed on blockchain actors from the compensation they receive in
return. Li et al. [36] identify the free contract execution capabilities
in Ethereum RPC services as a vulnerability to denial-of-service
attacks. They propose corresponding denial-of-service attacks that
enable adversaries to exploit this vulnerability at zero Ether cost.

– Attacks on consensus layer: Karakostas et al. [28] analyze bribing
attacks in proof-of-stake distributed ledgers from a game theoretic
perspective. Yaish et al. [66] introduce attacks on Ethereum proof-of-
work consensus, enabling miners to gain higher rewards whenever
block races ensue by manipulating block timestamps and difficulty-
adjustment algorithm. Tsuchiya et al. [61] present the amplification
attacks, where attackers leverage modified nodes to enable the
amplification of invalid transactions thousands of times, threatening
the stability and security of Ethereum network.
– Attacks on execution layer: The attacks targeting execution layer
force Ethereum to process under-priced operations, especially those
interacting with the blockchain state storage, thereby degrading
Ethereum’s performance. He et al. [21] design denial-of-service
attacks targeting the state storage, compelling blockchains to ex-
pend additional resources on state maintenance and verification to
manage the proliferated intermediate nodes within the state stor-
age. Perez et al. [48] present denial-of-service attacks on Ethereum
metering mechanism by leveraging genetic methods to generate
low-throughput smart contracts that incur low gas costs while
consuming high computational resources.

D Differences between our attack and related
studies on disrupting L2 rollups’ liveness

In §6.3, we compare our attack with denial of service attacks in
Ethereum ecosystem in terms of their impact and cost. In addition
to these denial of service attacks, other potential attacks in existing
studies, such as the delay attacks [32] and those exploiting bugs
detected by fAmulet [39], have the most similar impact to our denial
of sequencing attack. This is because all these attacks aim to disrupt
the liveness of layer 2 rollups. However, our attack differ from the
existing studies in three key aspects:
– Zero cost to attackers: In the delay attack, attackers necessarily
lose their stakes during launching attacks, resulting in significant
financial costs. In contrast, our attacks incur zero cost for attackers.
– Exploitation scenarios: fAmulet primarily focuses on detecting
bugs triggered by a single transaction that cause the unresponsive
status of layer 2 rollups. However, the vulnerabilities exploited by
our denial of sequencing attack are more difficult to trigger, as they
are exploited only through continuous crafting malicious trans-
actions. As a result, fAmulet is unable to detect these underlying
vulnerabilities in our denial of sequencing attack.
– Attack effect: The delay attack and hard finalization failure bugs
identified by fAmulet focus on disrupting the finalization process
of layer 2 rollups. Specifically, they aim to prevent layer 2 trans-
actions from being finalized on layer 1 blockchain, e.g., blocking
the generation of zk proofs required to ensure the validity of layer
2 transactions. In this scenario, layer 2 blockchain remains usable
for users, allowing layer 2 transactions to be processed and layer 2
blocks to be generated. In contrast, our attack targets the transac-
tion processing procedure of layer 2 rollups. Once this process is
disrupted, the layer 2 blockchain becomes entirely unusable, as it
can no longer process transactions or generate new blocks. This
leads to a complete denial of service for victim layer 2 rollups.


	Abstract
	1 Introduction
	2 Background of Ethereum layer 2 rollups
	3 Preliminary
	3.1 System model
	3.2 Notations
	3.3 Legality check

	4 Attack overview
	4.1 Attack design consideration

	5 Attack design
	5.1 Vulnerabilities related to side-channels
	5.2 Vulnerabilities related to incomplete check
	5.3 Optimize the attack effect

	6 Evaluation
	6.1 RQ1: Feasibility of our attack
	6.2 RQ2: Effect of attack optimization
	6.3 RQ3: Attack impact and cost
	6.4 RQ4: Vulnerability awareness

	7 Possible mitigations
	8 Discussion
	9 Related work
	10 Conclusion
	References
	A Background of blockchain scalability issues
	B Additional discussion
	C Related work
	D Differences between our attack and related studies on disrupting L2 rollups' liveness

